Loading…
Stable Solid‐State Zinc–Iodine Batteries Enabled by an Inorganic ZnPS3 Solid Electrolyte with Interconnected Zn2+ Migration Channels
Aqueous zinc–iodine (Zn–I2) batteries, with their outstanding merits in safety, cost, and environmental friendliness, have received extensive attention. However, the unstable electrochemistry at the electrode–electrolyte interface originating from free water results in zinc dendrite growth, hydrogen...
Saved in:
Published in: | Advanced functional materials 2024-01, Vol.34 (3) |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Lv, Zeheng Kang, Yuanhong Chen, Guanhong Yang, Jin Chen, Minghui Lin, Pengxiang Wu, Qilong Zhang, Minghao Zhao, Jinbao Yang, Yang |
description | Aqueous zinc–iodine (Zn–I2) batteries, with their outstanding merits in safety, cost, and environmental friendliness, have received extensive attention. However, the unstable electrochemistry at the electrode–electrolyte interface originating from free water results in zinc dendrite growth, hydrogen evolution reaction (HER), and polyiodide ions shuttle, hindering their practical applications. Herein, solid‐state Zn–I2 batteries based on an inorganic ZnPS3 (ZPS) electrolyte are developed to overcome inherent interfacial issues associated with aqueous electrolytes. The inorganic ZnPS3 electrolyte, with a low Zn2+ diffusion energy barrier of ≈0.3 eV, demonstrates an exceptional ion conductivity of 2.0 × 10−3 S cm−1 (30 °C), which also satisfies high chemical/electrochemical stability and mechanical strength. The solid Zn2+ conduction mechanism, facilitated by bounded water only on grains, effectively suppresses HER and polyiodide ions shuttling. During cycling, a ZnS functional layer is spontaneously formed on the anode/electrolyte interphase, promoting dendrite‐free Zn deposition behavior with a more stable (002) crystal orientation. Consequently, the solid‐state configuration of Zn–I2 battery enables an impressive reversible capacity of 154.2 mAh g−1 after 400 cycles at 0.1 A g−1. Importantly, the compatibility of the solid‐state ZnPS3 electrolyte is also confirmed in the Zn||CuS cell, indicating its potential as a versatile platform for developing inorganic solid‐state zinc‐ion batteries (ZIBs). |
doi_str_mv | 10.1002/adfm.202310476 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2914382816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2914382816</sourcerecordid><originalsourceid>FETCH-LOGICAL-p153t-a64b07928647b33518e23cf2d6af421f59daeebaeb76e28764bf33ec37f712973</originalsourceid><addsrcrecordid>eNo9jc1KAzEURoMoWKtb1wGXMjXJnSYzSy1VCxWFKkg3JTNz06aMSZ1Jke66dCn4hn0SIxVX9-985xJyzlmPMyaudGXeeoIJ4CxV8oB0uOQyASayw_-evx6Tk7ZdMsaVgrRDPidBFzXSia9ttdt-xTEgnVpX7rbfI19Zh_RGh4CNxZYO3S9c0WJDtaMj55u5drakU_c0gb2DDmssQ-PrTfR82LCIWEyX3rm4j9mpE5f0wc4bHax3dLDQ8VK3p-TI6LrFs7_aJS-3w-fBfTJ-vBsNrsfJivchJFqmBVO5yGSqCoA-z1BAaUQltUkFN_280oiFxkJJFJmKuAHAEpRRXOQKuuRi7101_n2NbZgt_bpx8eVM5DyFTGRcwg_cZmbx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2914382816</pqid></control><display><type>article</type><title>Stable Solid‐State Zinc–Iodine Batteries Enabled by an Inorganic ZnPS3 Solid Electrolyte with Interconnected Zn2+ Migration Channels</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Lv, Zeheng ; Kang, Yuanhong ; Chen, Guanhong ; Yang, Jin ; Chen, Minghui ; Lin, Pengxiang ; Wu, Qilong ; Zhang, Minghao ; Zhao, Jinbao ; Yang, Yang</creator><creatorcontrib>Lv, Zeheng ; Kang, Yuanhong ; Chen, Guanhong ; Yang, Jin ; Chen, Minghui ; Lin, Pengxiang ; Wu, Qilong ; Zhang, Minghao ; Zhao, Jinbao ; Yang, Yang</creatorcontrib><description>Aqueous zinc–iodine (Zn–I2) batteries, with their outstanding merits in safety, cost, and environmental friendliness, have received extensive attention. However, the unstable electrochemistry at the electrode–electrolyte interface originating from free water results in zinc dendrite growth, hydrogen evolution reaction (HER), and polyiodide ions shuttle, hindering their practical applications. Herein, solid‐state Zn–I2 batteries based on an inorganic ZnPS3 (ZPS) electrolyte are developed to overcome inherent interfacial issues associated with aqueous electrolytes. The inorganic ZnPS3 electrolyte, with a low Zn2+ diffusion energy barrier of ≈0.3 eV, demonstrates an exceptional ion conductivity of 2.0 × 10−3 S cm−1 (30 °C), which also satisfies high chemical/electrochemical stability and mechanical strength. The solid Zn2+ conduction mechanism, facilitated by bounded water only on grains, effectively suppresses HER and polyiodide ions shuttling. During cycling, a ZnS functional layer is spontaneously formed on the anode/electrolyte interphase, promoting dendrite‐free Zn deposition behavior with a more stable (002) crystal orientation. Consequently, the solid‐state configuration of Zn–I2 battery enables an impressive reversible capacity of 154.2 mAh g−1 after 400 cycles at 0.1 A g−1. Importantly, the compatibility of the solid‐state ZnPS3 electrolyte is also confirmed in the Zn||CuS cell, indicating its potential as a versatile platform for developing inorganic solid‐state zinc‐ion batteries (ZIBs).</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202310476</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aqueous electrolytes ; Copper sulfides ; Crystal structure ; Diffusion barriers ; Electrochemistry ; Electrolytes ; Hydrogen evolution reactions ; Iodine ; Solid electrolytes ; Zinc</subject><ispartof>Advanced functional materials, 2024-01, Vol.34 (3)</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lv, Zeheng</creatorcontrib><creatorcontrib>Kang, Yuanhong</creatorcontrib><creatorcontrib>Chen, Guanhong</creatorcontrib><creatorcontrib>Yang, Jin</creatorcontrib><creatorcontrib>Chen, Minghui</creatorcontrib><creatorcontrib>Lin, Pengxiang</creatorcontrib><creatorcontrib>Wu, Qilong</creatorcontrib><creatorcontrib>Zhang, Minghao</creatorcontrib><creatorcontrib>Zhao, Jinbao</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><title>Stable Solid‐State Zinc–Iodine Batteries Enabled by an Inorganic ZnPS3 Solid Electrolyte with Interconnected Zn2+ Migration Channels</title><title>Advanced functional materials</title><description>Aqueous zinc–iodine (Zn–I2) batteries, with their outstanding merits in safety, cost, and environmental friendliness, have received extensive attention. However, the unstable electrochemistry at the electrode–electrolyte interface originating from free water results in zinc dendrite growth, hydrogen evolution reaction (HER), and polyiodide ions shuttle, hindering their practical applications. Herein, solid‐state Zn–I2 batteries based on an inorganic ZnPS3 (ZPS) electrolyte are developed to overcome inherent interfacial issues associated with aqueous electrolytes. The inorganic ZnPS3 electrolyte, with a low Zn2+ diffusion energy barrier of ≈0.3 eV, demonstrates an exceptional ion conductivity of 2.0 × 10−3 S cm−1 (30 °C), which also satisfies high chemical/electrochemical stability and mechanical strength. The solid Zn2+ conduction mechanism, facilitated by bounded water only on grains, effectively suppresses HER and polyiodide ions shuttling. During cycling, a ZnS functional layer is spontaneously formed on the anode/electrolyte interphase, promoting dendrite‐free Zn deposition behavior with a more stable (002) crystal orientation. Consequently, the solid‐state configuration of Zn–I2 battery enables an impressive reversible capacity of 154.2 mAh g−1 after 400 cycles at 0.1 A g−1. Importantly, the compatibility of the solid‐state ZnPS3 electrolyte is also confirmed in the Zn||CuS cell, indicating its potential as a versatile platform for developing inorganic solid‐state zinc‐ion batteries (ZIBs).</description><subject>Aqueous electrolytes</subject><subject>Copper sulfides</subject><subject>Crystal structure</subject><subject>Diffusion barriers</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Hydrogen evolution reactions</subject><subject>Iodine</subject><subject>Solid electrolytes</subject><subject>Zinc</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9jc1KAzEURoMoWKtb1wGXMjXJnSYzSy1VCxWFKkg3JTNz06aMSZ1Jke66dCn4hn0SIxVX9-985xJyzlmPMyaudGXeeoIJ4CxV8oB0uOQyASayw_-evx6Tk7ZdMsaVgrRDPidBFzXSia9ttdt-xTEgnVpX7rbfI19Zh_RGh4CNxZYO3S9c0WJDtaMj55u5drakU_c0gb2DDmssQ-PrTfR82LCIWEyX3rm4j9mpE5f0wc4bHax3dLDQ8VK3p-TI6LrFs7_aJS-3w-fBfTJ-vBsNrsfJivchJFqmBVO5yGSqCoA-z1BAaUQltUkFN_280oiFxkJJFJmKuAHAEpRRXOQKuuRi7101_n2NbZgt_bpx8eVM5DyFTGRcwg_cZmbx</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Lv, Zeheng</creator><creator>Kang, Yuanhong</creator><creator>Chen, Guanhong</creator><creator>Yang, Jin</creator><creator>Chen, Minghui</creator><creator>Lin, Pengxiang</creator><creator>Wu, Qilong</creator><creator>Zhang, Minghao</creator><creator>Zhao, Jinbao</creator><creator>Yang, Yang</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20240101</creationdate><title>Stable Solid‐State Zinc–Iodine Batteries Enabled by an Inorganic ZnPS3 Solid Electrolyte with Interconnected Zn2+ Migration Channels</title><author>Lv, Zeheng ; Kang, Yuanhong ; Chen, Guanhong ; Yang, Jin ; Chen, Minghui ; Lin, Pengxiang ; Wu, Qilong ; Zhang, Minghao ; Zhao, Jinbao ; Yang, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p153t-a64b07928647b33518e23cf2d6af421f59daeebaeb76e28764bf33ec37f712973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aqueous electrolytes</topic><topic>Copper sulfides</topic><topic>Crystal structure</topic><topic>Diffusion barriers</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Hydrogen evolution reactions</topic><topic>Iodine</topic><topic>Solid electrolytes</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Zeheng</creatorcontrib><creatorcontrib>Kang, Yuanhong</creatorcontrib><creatorcontrib>Chen, Guanhong</creatorcontrib><creatorcontrib>Yang, Jin</creatorcontrib><creatorcontrib>Chen, Minghui</creatorcontrib><creatorcontrib>Lin, Pengxiang</creatorcontrib><creatorcontrib>Wu, Qilong</creatorcontrib><creatorcontrib>Zhang, Minghao</creatorcontrib><creatorcontrib>Zhao, Jinbao</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Zeheng</au><au>Kang, Yuanhong</au><au>Chen, Guanhong</au><au>Yang, Jin</au><au>Chen, Minghui</au><au>Lin, Pengxiang</au><au>Wu, Qilong</au><au>Zhang, Minghao</au><au>Zhao, Jinbao</au><au>Yang, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable Solid‐State Zinc–Iodine Batteries Enabled by an Inorganic ZnPS3 Solid Electrolyte with Interconnected Zn2+ Migration Channels</atitle><jtitle>Advanced functional materials</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>34</volume><issue>3</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Aqueous zinc–iodine (Zn–I2) batteries, with their outstanding merits in safety, cost, and environmental friendliness, have received extensive attention. However, the unstable electrochemistry at the electrode–electrolyte interface originating from free water results in zinc dendrite growth, hydrogen evolution reaction (HER), and polyiodide ions shuttle, hindering their practical applications. Herein, solid‐state Zn–I2 batteries based on an inorganic ZnPS3 (ZPS) electrolyte are developed to overcome inherent interfacial issues associated with aqueous electrolytes. The inorganic ZnPS3 electrolyte, with a low Zn2+ diffusion energy barrier of ≈0.3 eV, demonstrates an exceptional ion conductivity of 2.0 × 10−3 S cm−1 (30 °C), which also satisfies high chemical/electrochemical stability and mechanical strength. The solid Zn2+ conduction mechanism, facilitated by bounded water only on grains, effectively suppresses HER and polyiodide ions shuttling. During cycling, a ZnS functional layer is spontaneously formed on the anode/electrolyte interphase, promoting dendrite‐free Zn deposition behavior with a more stable (002) crystal orientation. Consequently, the solid‐state configuration of Zn–I2 battery enables an impressive reversible capacity of 154.2 mAh g−1 after 400 cycles at 0.1 A g−1. Importantly, the compatibility of the solid‐state ZnPS3 electrolyte is also confirmed in the Zn||CuS cell, indicating its potential as a versatile platform for developing inorganic solid‐state zinc‐ion batteries (ZIBs).</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202310476</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-01, Vol.34 (3) |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2914382816 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Aqueous electrolytes Copper sulfides Crystal structure Diffusion barriers Electrochemistry Electrolytes Hydrogen evolution reactions Iodine Solid electrolytes Zinc |
title | Stable Solid‐State Zinc–Iodine Batteries Enabled by an Inorganic ZnPS3 Solid Electrolyte with Interconnected Zn2+ Migration Channels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20Solid%E2%80%90State%20Zinc%E2%80%93Iodine%20Batteries%20Enabled%20by%20an%20Inorganic%20ZnPS3%20Solid%20Electrolyte%20with%20Interconnected%20Zn2+%20Migration%20Channels&rft.jtitle=Advanced%20functional%20materials&rft.au=Lv,%20Zeheng&rft.date=2024-01-01&rft.volume=34&rft.issue=3&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202310476&rft_dat=%3Cproquest%3E2914382816%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p153t-a64b07928647b33518e23cf2d6af421f59daeebaeb76e28764bf33ec37f712973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2914382816&rft_id=info:pmid/&rfr_iscdi=true |