Loading…

Stable Solid‐State Zinc–Iodine Batteries Enabled by an Inorganic ZnPS3 Solid Electrolyte with Interconnected Zn2+ Migration Channels

Aqueous zinc–iodine (Zn–I2) batteries, with their outstanding merits in safety, cost, and environmental friendliness, have received extensive attention. However, the unstable electrochemistry at the electrode–electrolyte interface originating from free water results in zinc dendrite growth, hydrogen...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2024-01, Vol.34 (3)
Main Authors: Lv, Zeheng, Kang, Yuanhong, Chen, Guanhong, Yang, Jin, Chen, Minghui, Lin, Pengxiang, Wu, Qilong, Zhang, Minghao, Zhao, Jinbao, Yang, Yang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 3
container_start_page
container_title Advanced functional materials
container_volume 34
creator Lv, Zeheng
Kang, Yuanhong
Chen, Guanhong
Yang, Jin
Chen, Minghui
Lin, Pengxiang
Wu, Qilong
Zhang, Minghao
Zhao, Jinbao
Yang, Yang
description Aqueous zinc–iodine (Zn–I2) batteries, with their outstanding merits in safety, cost, and environmental friendliness, have received extensive attention. However, the unstable electrochemistry at the electrode–electrolyte interface originating from free water results in zinc dendrite growth, hydrogen evolution reaction (HER), and polyiodide ions shuttle, hindering their practical applications. Herein, solid‐state Zn–I2 batteries based on an inorganic ZnPS3 (ZPS) electrolyte are developed to overcome inherent interfacial issues associated with aqueous electrolytes. The inorganic ZnPS3 electrolyte, with a low Zn2+ diffusion energy barrier of ≈0.3 eV, demonstrates an exceptional ion conductivity of 2.0 × 10−3 S cm−1 (30 °C), which also satisfies high chemical/electrochemical stability and mechanical strength. The solid Zn2+ conduction mechanism, facilitated by bounded water only on grains, effectively suppresses HER and polyiodide ions shuttling. During cycling, a ZnS functional layer is spontaneously formed on the anode/electrolyte interphase, promoting dendrite‐free Zn deposition behavior with a more stable (002) crystal orientation. Consequently, the solid‐state configuration of Zn–I2 battery enables an impressive reversible capacity of 154.2 mAh g−1 after 400 cycles at 0.1 A g−1. Importantly, the compatibility of the solid‐state ZnPS3 electrolyte is also confirmed in the Zn||CuS cell, indicating its potential as a versatile platform for developing inorganic solid‐state zinc‐ion batteries (ZIBs).
doi_str_mv 10.1002/adfm.202310476
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2914382816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2914382816</sourcerecordid><originalsourceid>FETCH-LOGICAL-p153t-a64b07928647b33518e23cf2d6af421f59daeebaeb76e28764bf33ec37f712973</originalsourceid><addsrcrecordid>eNo9jc1KAzEURoMoWKtb1wGXMjXJnSYzSy1VCxWFKkg3JTNz06aMSZ1Jke66dCn4hn0SIxVX9-985xJyzlmPMyaudGXeeoIJ4CxV8oB0uOQyASayw_-evx6Tk7ZdMsaVgrRDPidBFzXSia9ttdt-xTEgnVpX7rbfI19Zh_RGh4CNxZYO3S9c0WJDtaMj55u5drakU_c0gb2DDmssQ-PrTfR82LCIWEyX3rm4j9mpE5f0wc4bHax3dLDQ8VK3p-TI6LrFs7_aJS-3w-fBfTJ-vBsNrsfJivchJFqmBVO5yGSqCoA-z1BAaUQltUkFN_280oiFxkJJFJmKuAHAEpRRXOQKuuRi7101_n2NbZgt_bpx8eVM5DyFTGRcwg_cZmbx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2914382816</pqid></control><display><type>article</type><title>Stable Solid‐State Zinc–Iodine Batteries Enabled by an Inorganic ZnPS3 Solid Electrolyte with Interconnected Zn2+ Migration Channels</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Lv, Zeheng ; Kang, Yuanhong ; Chen, Guanhong ; Yang, Jin ; Chen, Minghui ; Lin, Pengxiang ; Wu, Qilong ; Zhang, Minghao ; Zhao, Jinbao ; Yang, Yang</creator><creatorcontrib>Lv, Zeheng ; Kang, Yuanhong ; Chen, Guanhong ; Yang, Jin ; Chen, Minghui ; Lin, Pengxiang ; Wu, Qilong ; Zhang, Minghao ; Zhao, Jinbao ; Yang, Yang</creatorcontrib><description>Aqueous zinc–iodine (Zn–I2) batteries, with their outstanding merits in safety, cost, and environmental friendliness, have received extensive attention. However, the unstable electrochemistry at the electrode–electrolyte interface originating from free water results in zinc dendrite growth, hydrogen evolution reaction (HER), and polyiodide ions shuttle, hindering their practical applications. Herein, solid‐state Zn–I2 batteries based on an inorganic ZnPS3 (ZPS) electrolyte are developed to overcome inherent interfacial issues associated with aqueous electrolytes. The inorganic ZnPS3 electrolyte, with a low Zn2+ diffusion energy barrier of ≈0.3 eV, demonstrates an exceptional ion conductivity of 2.0 × 10−3 S cm−1 (30 °C), which also satisfies high chemical/electrochemical stability and mechanical strength. The solid Zn2+ conduction mechanism, facilitated by bounded water only on grains, effectively suppresses HER and polyiodide ions shuttling. During cycling, a ZnS functional layer is spontaneously formed on the anode/electrolyte interphase, promoting dendrite‐free Zn deposition behavior with a more stable (002) crystal orientation. Consequently, the solid‐state configuration of Zn–I2 battery enables an impressive reversible capacity of 154.2 mAh g−1 after 400 cycles at 0.1 A g−1. Importantly, the compatibility of the solid‐state ZnPS3 electrolyte is also confirmed in the Zn||CuS cell, indicating its potential as a versatile platform for developing inorganic solid‐state zinc‐ion batteries (ZIBs).</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202310476</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aqueous electrolytes ; Copper sulfides ; Crystal structure ; Diffusion barriers ; Electrochemistry ; Electrolytes ; Hydrogen evolution reactions ; Iodine ; Solid electrolytes ; Zinc</subject><ispartof>Advanced functional materials, 2024-01, Vol.34 (3)</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lv, Zeheng</creatorcontrib><creatorcontrib>Kang, Yuanhong</creatorcontrib><creatorcontrib>Chen, Guanhong</creatorcontrib><creatorcontrib>Yang, Jin</creatorcontrib><creatorcontrib>Chen, Minghui</creatorcontrib><creatorcontrib>Lin, Pengxiang</creatorcontrib><creatorcontrib>Wu, Qilong</creatorcontrib><creatorcontrib>Zhang, Minghao</creatorcontrib><creatorcontrib>Zhao, Jinbao</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><title>Stable Solid‐State Zinc–Iodine Batteries Enabled by an Inorganic ZnPS3 Solid Electrolyte with Interconnected Zn2+ Migration Channels</title><title>Advanced functional materials</title><description>Aqueous zinc–iodine (Zn–I2) batteries, with their outstanding merits in safety, cost, and environmental friendliness, have received extensive attention. However, the unstable electrochemistry at the electrode–electrolyte interface originating from free water results in zinc dendrite growth, hydrogen evolution reaction (HER), and polyiodide ions shuttle, hindering their practical applications. Herein, solid‐state Zn–I2 batteries based on an inorganic ZnPS3 (ZPS) electrolyte are developed to overcome inherent interfacial issues associated with aqueous electrolytes. The inorganic ZnPS3 electrolyte, with a low Zn2+ diffusion energy barrier of ≈0.3 eV, demonstrates an exceptional ion conductivity of 2.0 × 10−3 S cm−1 (30 °C), which also satisfies high chemical/electrochemical stability and mechanical strength. The solid Zn2+ conduction mechanism, facilitated by bounded water only on grains, effectively suppresses HER and polyiodide ions shuttling. During cycling, a ZnS functional layer is spontaneously formed on the anode/electrolyte interphase, promoting dendrite‐free Zn deposition behavior with a more stable (002) crystal orientation. Consequently, the solid‐state configuration of Zn–I2 battery enables an impressive reversible capacity of 154.2 mAh g−1 after 400 cycles at 0.1 A g−1. Importantly, the compatibility of the solid‐state ZnPS3 electrolyte is also confirmed in the Zn||CuS cell, indicating its potential as a versatile platform for developing inorganic solid‐state zinc‐ion batteries (ZIBs).</description><subject>Aqueous electrolytes</subject><subject>Copper sulfides</subject><subject>Crystal structure</subject><subject>Diffusion barriers</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Hydrogen evolution reactions</subject><subject>Iodine</subject><subject>Solid electrolytes</subject><subject>Zinc</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9jc1KAzEURoMoWKtb1wGXMjXJnSYzSy1VCxWFKkg3JTNz06aMSZ1Jke66dCn4hn0SIxVX9-985xJyzlmPMyaudGXeeoIJ4CxV8oB0uOQyASayw_-evx6Tk7ZdMsaVgrRDPidBFzXSia9ttdt-xTEgnVpX7rbfI19Zh_RGh4CNxZYO3S9c0WJDtaMj55u5drakU_c0gb2DDmssQ-PrTfR82LCIWEyX3rm4j9mpE5f0wc4bHax3dLDQ8VK3p-TI6LrFs7_aJS-3w-fBfTJ-vBsNrsfJivchJFqmBVO5yGSqCoA-z1BAaUQltUkFN_280oiFxkJJFJmKuAHAEpRRXOQKuuRi7101_n2NbZgt_bpx8eVM5DyFTGRcwg_cZmbx</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Lv, Zeheng</creator><creator>Kang, Yuanhong</creator><creator>Chen, Guanhong</creator><creator>Yang, Jin</creator><creator>Chen, Minghui</creator><creator>Lin, Pengxiang</creator><creator>Wu, Qilong</creator><creator>Zhang, Minghao</creator><creator>Zhao, Jinbao</creator><creator>Yang, Yang</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20240101</creationdate><title>Stable Solid‐State Zinc–Iodine Batteries Enabled by an Inorganic ZnPS3 Solid Electrolyte with Interconnected Zn2+ Migration Channels</title><author>Lv, Zeheng ; Kang, Yuanhong ; Chen, Guanhong ; Yang, Jin ; Chen, Minghui ; Lin, Pengxiang ; Wu, Qilong ; Zhang, Minghao ; Zhao, Jinbao ; Yang, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p153t-a64b07928647b33518e23cf2d6af421f59daeebaeb76e28764bf33ec37f712973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aqueous electrolytes</topic><topic>Copper sulfides</topic><topic>Crystal structure</topic><topic>Diffusion barriers</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Hydrogen evolution reactions</topic><topic>Iodine</topic><topic>Solid electrolytes</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Zeheng</creatorcontrib><creatorcontrib>Kang, Yuanhong</creatorcontrib><creatorcontrib>Chen, Guanhong</creatorcontrib><creatorcontrib>Yang, Jin</creatorcontrib><creatorcontrib>Chen, Minghui</creatorcontrib><creatorcontrib>Lin, Pengxiang</creatorcontrib><creatorcontrib>Wu, Qilong</creatorcontrib><creatorcontrib>Zhang, Minghao</creatorcontrib><creatorcontrib>Zhao, Jinbao</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Zeheng</au><au>Kang, Yuanhong</au><au>Chen, Guanhong</au><au>Yang, Jin</au><au>Chen, Minghui</au><au>Lin, Pengxiang</au><au>Wu, Qilong</au><au>Zhang, Minghao</au><au>Zhao, Jinbao</au><au>Yang, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable Solid‐State Zinc–Iodine Batteries Enabled by an Inorganic ZnPS3 Solid Electrolyte with Interconnected Zn2+ Migration Channels</atitle><jtitle>Advanced functional materials</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>34</volume><issue>3</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Aqueous zinc–iodine (Zn–I2) batteries, with their outstanding merits in safety, cost, and environmental friendliness, have received extensive attention. However, the unstable electrochemistry at the electrode–electrolyte interface originating from free water results in zinc dendrite growth, hydrogen evolution reaction (HER), and polyiodide ions shuttle, hindering their practical applications. Herein, solid‐state Zn–I2 batteries based on an inorganic ZnPS3 (ZPS) electrolyte are developed to overcome inherent interfacial issues associated with aqueous electrolytes. The inorganic ZnPS3 electrolyte, with a low Zn2+ diffusion energy barrier of ≈0.3 eV, demonstrates an exceptional ion conductivity of 2.0 × 10−3 S cm−1 (30 °C), which also satisfies high chemical/electrochemical stability and mechanical strength. The solid Zn2+ conduction mechanism, facilitated by bounded water only on grains, effectively suppresses HER and polyiodide ions shuttling. During cycling, a ZnS functional layer is spontaneously formed on the anode/electrolyte interphase, promoting dendrite‐free Zn deposition behavior with a more stable (002) crystal orientation. Consequently, the solid‐state configuration of Zn–I2 battery enables an impressive reversible capacity of 154.2 mAh g−1 after 400 cycles at 0.1 A g−1. Importantly, the compatibility of the solid‐state ZnPS3 electrolyte is also confirmed in the Zn||CuS cell, indicating its potential as a versatile platform for developing inorganic solid‐state zinc‐ion batteries (ZIBs).</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202310476</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-01, Vol.34 (3)
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2914382816
source Wiley-Blackwell Read & Publish Collection
subjects Aqueous electrolytes
Copper sulfides
Crystal structure
Diffusion barriers
Electrochemistry
Electrolytes
Hydrogen evolution reactions
Iodine
Solid electrolytes
Zinc
title Stable Solid‐State Zinc–Iodine Batteries Enabled by an Inorganic ZnPS3 Solid Electrolyte with Interconnected Zn2+ Migration Channels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20Solid%E2%80%90State%20Zinc%E2%80%93Iodine%20Batteries%20Enabled%20by%20an%20Inorganic%20ZnPS3%20Solid%20Electrolyte%20with%20Interconnected%20Zn2+%20Migration%20Channels&rft.jtitle=Advanced%20functional%20materials&rft.au=Lv,%20Zeheng&rft.date=2024-01-01&rft.volume=34&rft.issue=3&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202310476&rft_dat=%3Cproquest%3E2914382816%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p153t-a64b07928647b33518e23cf2d6af421f59daeebaeb76e28764bf33ec37f712973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2914382816&rft_id=info:pmid/&rfr_iscdi=true