Loading…

Solar Activity over the Last 10 Million Years

The depth profiles of cosmogenic isotopes in the lunar regolith depend on the flux and spectrum of Galactic and solar cosmic rays (GCRs and SCRs) and, therefore, depend on solar activity on a time scale comparable to the lifetime of these isotopes. In this work, we analyzed the content of various ra...

Full description

Saved in:
Bibliographic Details
Published in:Geomagnetism and Aeronomy 2023-12, Vol.63 (8), p.1272-1276
Main Authors: Pavlov, A. K., Vasiliev, G. I., Konstantinov, A. N., Ostryakov, V. M., Frolov, D. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-384a6a0f507ffecd65369e9bb98679c6aa449063bae28ad27bc7556d6e537f183
container_end_page 1276
container_issue 8
container_start_page 1272
container_title Geomagnetism and Aeronomy
container_volume 63
creator Pavlov, A. K.
Vasiliev, G. I.
Konstantinov, A. N.
Ostryakov, V. M.
Frolov, D. A.
description The depth profiles of cosmogenic isotopes in the lunar regolith depend on the flux and spectrum of Galactic and solar cosmic rays (GCRs and SCRs) and, therefore, depend on solar activity on a time scale comparable to the lifetime of these isotopes. In this work, we analyzed the content of various radionuclides ( 14 C, 26 Al, 10 Be, and 53 Mn) in samples obtained by the Apollo 15 mission. Comparing the results of modeling performed for the average GCR flow using the GEANT4.10 package with experimental data, we obtained a correction factor for the calculated formation rates of Y 0 ~ 0.6 for all the considered radionuclides. We attribute this result to the overestimated value of the flux of secondary particles in the lunar soil in the calculation using the GEANT4.10 package. This conclusion is supported by independent laboratory experiments. The estimated 10 Be depth profile can be consistent with the experimental data only if the additional (apart from the GCR) contribution of protons accelerated on the shock wave from a nearby supernova ~2.5 million years ago is taken into account. We also calculated the 53 Mn depth profile (with the longest half-life of those we considered), which can also be described taking the contribution of the supernova into account. We note that three long-lived isotopes, 26 Al, 10 Be, and 53 Mn, with different half-lives were modeled with the same average modulation potential. This allowed us to conclude that solar activity did not undergo noticeable changes on a time scale of about 10 million years.
doi_str_mv 10.1134/S0016793223080182
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2915103614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915103614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-384a6a0f507ffecd65369e9bb98679c6aa449063bae28ad27bc7556d6e537f183</originalsourceid><addsrcrecordid>eNp1kEFLxDAUhIMoWFd_gLeA5-p7SZOmx2VRV6h4WAU9lTRNtEvdrEl3Yf-9LRU8iKd3mPlmHkPIJcI1Is9uVgAo84IzxkEBKnZEEhRCpDITr8ckGeV01E_JWYxrAA5CYELSle90oHPTt_u2P1C_t4H2H5aWOvYUgT62Xdf6DX2zOsRzcuJ0F-3Fz52Rl7vb58UyLZ_uHxbzMjVMqj7lKtNSgxOQO2dNIwWXhS3qulDDj0ZqnWUFSF5ry5RuWF6bXAjZSCt47lDxGbmacrfBf-1s7Ku134XNUFmxAgUCl5gNLpxcJvgYg3XVNrSfOhwqhGpcpfqzysCwiYmDd_Nuw2_y_9A3R1JhEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915103614</pqid></control><display><type>article</type><title>Solar Activity over the Last 10 Million Years</title><source>Springer Nature</source><creator>Pavlov, A. K. ; Vasiliev, G. I. ; Konstantinov, A. N. ; Ostryakov, V. M. ; Frolov, D. A.</creator><creatorcontrib>Pavlov, A. K. ; Vasiliev, G. I. ; Konstantinov, A. N. ; Ostryakov, V. M. ; Frolov, D. A.</creatorcontrib><description>The depth profiles of cosmogenic isotopes in the lunar regolith depend on the flux and spectrum of Galactic and solar cosmic rays (GCRs and SCRs) and, therefore, depend on solar activity on a time scale comparable to the lifetime of these isotopes. In this work, we analyzed the content of various radionuclides ( 14 C, 26 Al, 10 Be, and 53 Mn) in samples obtained by the Apollo 15 mission. Comparing the results of modeling performed for the average GCR flow using the GEANT4.10 package with experimental data, we obtained a correction factor for the calculated formation rates of Y 0 ~ 0.6 for all the considered radionuclides. We attribute this result to the overestimated value of the flux of secondary particles in the lunar soil in the calculation using the GEANT4.10 package. This conclusion is supported by independent laboratory experiments. The estimated 10 Be depth profile can be consistent with the experimental data only if the additional (apart from the GCR) contribution of protons accelerated on the shock wave from a nearby supernova ~2.5 million years ago is taken into account. We also calculated the 53 Mn depth profile (with the longest half-life of those we considered), which can also be described taking the contribution of the supernova into account. We note that three long-lived isotopes, 26 Al, 10 Be, and 53 Mn, with different half-lives were modeled with the same average modulation potential. This allowed us to conclude that solar activity did not undergo noticeable changes on a time scale of about 10 million years.</description><identifier>ISSN: 0016-7932</identifier><identifier>EISSN: 1555-645X</identifier><identifier>EISSN: 0016-7940</identifier><identifier>DOI: 10.1134/S0016793223080182</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Beryllium 10 ; Carbon 14 ; Cosmic ray showers ; Cosmic rays ; Depth profiling ; Earth and Environmental Science ; Earth Sciences ; Experimental data ; Geophysics/Geodesy ; Half-life ; Isotopes ; Laboratory experiments ; Lunar regolith ; Lunar soil ; Lunar surface ; Radioisotopes ; Regolith ; Shock waves ; Solar activity ; Solar cosmic rays ; Supernova ; Supernovae ; Time</subject><ispartof>Geomagnetism and Aeronomy, 2023-12, Vol.63 (8), p.1272-1276</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 0016-7932, Geomagnetism and Aeronomy, 2023, Vol. 63, No. 8, pp. 1272–1276. © Pleiades Publishing, Ltd., 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-384a6a0f507ffecd65369e9bb98679c6aa449063bae28ad27bc7556d6e537f183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pavlov, A. K.</creatorcontrib><creatorcontrib>Vasiliev, G. I.</creatorcontrib><creatorcontrib>Konstantinov, A. N.</creatorcontrib><creatorcontrib>Ostryakov, V. M.</creatorcontrib><creatorcontrib>Frolov, D. A.</creatorcontrib><title>Solar Activity over the Last 10 Million Years</title><title>Geomagnetism and Aeronomy</title><addtitle>Geomagn. Aeron</addtitle><description>The depth profiles of cosmogenic isotopes in the lunar regolith depend on the flux and spectrum of Galactic and solar cosmic rays (GCRs and SCRs) and, therefore, depend on solar activity on a time scale comparable to the lifetime of these isotopes. In this work, we analyzed the content of various radionuclides ( 14 C, 26 Al, 10 Be, and 53 Mn) in samples obtained by the Apollo 15 mission. Comparing the results of modeling performed for the average GCR flow using the GEANT4.10 package with experimental data, we obtained a correction factor for the calculated formation rates of Y 0 ~ 0.6 for all the considered radionuclides. We attribute this result to the overestimated value of the flux of secondary particles in the lunar soil in the calculation using the GEANT4.10 package. This conclusion is supported by independent laboratory experiments. The estimated 10 Be depth profile can be consistent with the experimental data only if the additional (apart from the GCR) contribution of protons accelerated on the shock wave from a nearby supernova ~2.5 million years ago is taken into account. We also calculated the 53 Mn depth profile (with the longest half-life of those we considered), which can also be described taking the contribution of the supernova into account. We note that three long-lived isotopes, 26 Al, 10 Be, and 53 Mn, with different half-lives were modeled with the same average modulation potential. This allowed us to conclude that solar activity did not undergo noticeable changes on a time scale of about 10 million years.</description><subject>Beryllium 10</subject><subject>Carbon 14</subject><subject>Cosmic ray showers</subject><subject>Cosmic rays</subject><subject>Depth profiling</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Experimental data</subject><subject>Geophysics/Geodesy</subject><subject>Half-life</subject><subject>Isotopes</subject><subject>Laboratory experiments</subject><subject>Lunar regolith</subject><subject>Lunar soil</subject><subject>Lunar surface</subject><subject>Radioisotopes</subject><subject>Regolith</subject><subject>Shock waves</subject><subject>Solar activity</subject><subject>Solar cosmic rays</subject><subject>Supernova</subject><subject>Supernovae</subject><subject>Time</subject><issn>0016-7932</issn><issn>1555-645X</issn><issn>0016-7940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAUhIMoWFd_gLeA5-p7SZOmx2VRV6h4WAU9lTRNtEvdrEl3Yf-9LRU8iKd3mPlmHkPIJcI1Is9uVgAo84IzxkEBKnZEEhRCpDITr8ckGeV01E_JWYxrAA5CYELSle90oHPTt_u2P1C_t4H2H5aWOvYUgT62Xdf6DX2zOsRzcuJ0F-3Fz52Rl7vb58UyLZ_uHxbzMjVMqj7lKtNSgxOQO2dNIwWXhS3qulDDj0ZqnWUFSF5ry5RuWF6bXAjZSCt47lDxGbmacrfBf-1s7Ku134XNUFmxAgUCl5gNLpxcJvgYg3XVNrSfOhwqhGpcpfqzysCwiYmDd_Nuw2_y_9A3R1JhEA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Pavlov, A. K.</creator><creator>Vasiliev, G. I.</creator><creator>Konstantinov, A. N.</creator><creator>Ostryakov, V. M.</creator><creator>Frolov, D. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>20231201</creationdate><title>Solar Activity over the Last 10 Million Years</title><author>Pavlov, A. K. ; Vasiliev, G. I. ; Konstantinov, A. N. ; Ostryakov, V. M. ; Frolov, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-384a6a0f507ffecd65369e9bb98679c6aa449063bae28ad27bc7556d6e537f183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Beryllium 10</topic><topic>Carbon 14</topic><topic>Cosmic ray showers</topic><topic>Cosmic rays</topic><topic>Depth profiling</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Experimental data</topic><topic>Geophysics/Geodesy</topic><topic>Half-life</topic><topic>Isotopes</topic><topic>Laboratory experiments</topic><topic>Lunar regolith</topic><topic>Lunar soil</topic><topic>Lunar surface</topic><topic>Radioisotopes</topic><topic>Regolith</topic><topic>Shock waves</topic><topic>Solar activity</topic><topic>Solar cosmic rays</topic><topic>Supernova</topic><topic>Supernovae</topic><topic>Time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pavlov, A. K.</creatorcontrib><creatorcontrib>Vasiliev, G. I.</creatorcontrib><creatorcontrib>Konstantinov, A. N.</creatorcontrib><creatorcontrib>Ostryakov, V. M.</creatorcontrib><creatorcontrib>Frolov, D. A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geomagnetism and Aeronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pavlov, A. K.</au><au>Vasiliev, G. I.</au><au>Konstantinov, A. N.</au><au>Ostryakov, V. M.</au><au>Frolov, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar Activity over the Last 10 Million Years</atitle><jtitle>Geomagnetism and Aeronomy</jtitle><stitle>Geomagn. Aeron</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>63</volume><issue>8</issue><spage>1272</spage><epage>1276</epage><pages>1272-1276</pages><issn>0016-7932</issn><eissn>1555-645X</eissn><eissn>0016-7940</eissn><abstract>The depth profiles of cosmogenic isotopes in the lunar regolith depend on the flux and spectrum of Galactic and solar cosmic rays (GCRs and SCRs) and, therefore, depend on solar activity on a time scale comparable to the lifetime of these isotopes. In this work, we analyzed the content of various radionuclides ( 14 C, 26 Al, 10 Be, and 53 Mn) in samples obtained by the Apollo 15 mission. Comparing the results of modeling performed for the average GCR flow using the GEANT4.10 package with experimental data, we obtained a correction factor for the calculated formation rates of Y 0 ~ 0.6 for all the considered radionuclides. We attribute this result to the overestimated value of the flux of secondary particles in the lunar soil in the calculation using the GEANT4.10 package. This conclusion is supported by independent laboratory experiments. The estimated 10 Be depth profile can be consistent with the experimental data only if the additional (apart from the GCR) contribution of protons accelerated on the shock wave from a nearby supernova ~2.5 million years ago is taken into account. We also calculated the 53 Mn depth profile (with the longest half-life of those we considered), which can also be described taking the contribution of the supernova into account. We note that three long-lived isotopes, 26 Al, 10 Be, and 53 Mn, with different half-lives were modeled with the same average modulation potential. This allowed us to conclude that solar activity did not undergo noticeable changes on a time scale of about 10 million years.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0016793223080182</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-7932
ispartof Geomagnetism and Aeronomy, 2023-12, Vol.63 (8), p.1272-1276
issn 0016-7932
1555-645X
0016-7940
language eng
recordid cdi_proquest_journals_2915103614
source Springer Nature
subjects Beryllium 10
Carbon 14
Cosmic ray showers
Cosmic rays
Depth profiling
Earth and Environmental Science
Earth Sciences
Experimental data
Geophysics/Geodesy
Half-life
Isotopes
Laboratory experiments
Lunar regolith
Lunar soil
Lunar surface
Radioisotopes
Regolith
Shock waves
Solar activity
Solar cosmic rays
Supernova
Supernovae
Time
title Solar Activity over the Last 10 Million Years
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20Activity%20over%20the%20Last%2010%20Million%20Years&rft.jtitle=Geomagnetism%20and%20Aeronomy&rft.au=Pavlov,%20A.%20K.&rft.date=2023-12-01&rft.volume=63&rft.issue=8&rft.spage=1272&rft.epage=1276&rft.pages=1272-1276&rft.issn=0016-7932&rft.eissn=1555-645X&rft_id=info:doi/10.1134/S0016793223080182&rft_dat=%3Cproquest_cross%3E2915103614%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-384a6a0f507ffecd65369e9bb98679c6aa449063bae28ad27bc7556d6e537f183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2915103614&rft_id=info:pmid/&rfr_iscdi=true