Loading…

Study of a proton exchange membrane fuel cell and metal hydride system based on double spiral structure coupling

The coupling system of a Proton Exchange Membrane Fuel Cell (PEMFC) and Metal Hydride (MH) canister was investigated, employing a double spiral structure to redirect waste heat from the PEMFC to the MH. The remaining heat was harnessed for seawater desalination via a Multi-Stage Flash Desalination (...

Full description

Saved in:
Bibliographic Details
Published in:Sustainable energy & fuels 2024-01, Vol.8 (2), p.322-346
Main Authors: Wang, Xiao, Wang, Jin-Xin, Zhang, Hao, Li, Shi-Yu, Cheng, Yong-Pan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c240t-39449a96424dd1d72417769a22d6846066fbd208a474620f5b493168f1da867b3
container_end_page 346
container_issue 2
container_start_page 322
container_title Sustainable energy & fuels
container_volume 8
creator Wang, Xiao
Wang, Jin-Xin
Zhang, Hao
Li, Shi-Yu
Cheng, Yong-Pan
description The coupling system of a Proton Exchange Membrane Fuel Cell (PEMFC) and Metal Hydride (MH) canister was investigated, employing a double spiral structure to redirect waste heat from the PEMFC to the MH. The remaining heat was harnessed for seawater desalination via a Multi-Stage Flash Desalination (MSF) apparatus. By analyzing the operation of the PEMFC at various power points and dividing the hydrogen release process into stages A, B, and C, we investigate the time evolution law of each parameter of the MH bed. We evaluate the effects of the PEMFC operating parameters and the double spiral geometry parameters on the system's stable operation duration. The results reveal that the current density of the PEMFC significantly affected the system performance, while its operating temperature exerted a limited impact; the system exhibits greater suitability for long-term, low-power operation mode. Furthermore, the system's efficiency can reach up to 81.7%, with a stable working time of 6790 seconds. Considering the heat exchange in the MH canister, the double spiral heat exchanger's position occupancy problem, and the double-tube synergistic effect together, the MH is divided into α, β, and γ zones, and the heat exchanger geometrical parameters are optimized for the study. It is recommended to employ a tube diameter of 0.015 m and a coil spacing of 0.030 m for the heat exchanger. The coupling system of a Proton Exchange Membrane Fuel Cell (PEMFC) and Metal Hydride (MH) canister was investigated, employing a double spiral structure to redirect waste heat from the PEMFC to the MH.
doi_str_mv 10.1039/d3se01388j
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2915107376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915107376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-39449a96424dd1d72417769a22d6846066fbd208a474620f5b493168f1da867b3</originalsourceid><addsrcrecordid>eNpNkMtLAzEQh4MoWGov3oWAN2E1r002R6n1RcFD9bxkN0m7ZV_mAe5_b7Sinmb48c0M8wFwjtE1RlTeaOoNwrQo9kdgRqgsMiYROf7Xn4KF93uEEMGEkVzMwLgJUU9wsFDB0Q1h6KH5qHeq3xrYma5yqjfQRtPC2rQtVL1OcVAt3E3aNdpAP_lgOlgpbzRM03qIVZvisXGJ8sHFOkRnYD3EsW367Rk4sar1ZvFT5-DtfvW6fMzWLw9Py9t1VhOGQkYlY1JJzgjTGmtBGBaCS0WI5gXjiHNbaYIKxQTjBNm8YpJiXlisVcFFRefg8rA3ffUejQ_lfoiuTydLInGOkaCCJ-rqQNVu8N4ZW46u6ZSbSozKL6nlHd2svqU-J_jiADtf_3J_0uknJn1zMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915107376</pqid></control><display><type>article</type><title>Study of a proton exchange membrane fuel cell and metal hydride system based on double spiral structure coupling</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Wang, Xiao ; Wang, Jin-Xin ; Zhang, Hao ; Li, Shi-Yu ; Cheng, Yong-Pan</creator><creatorcontrib>Wang, Xiao ; Wang, Jin-Xin ; Zhang, Hao ; Li, Shi-Yu ; Cheng, Yong-Pan</creatorcontrib><description>The coupling system of a Proton Exchange Membrane Fuel Cell (PEMFC) and Metal Hydride (MH) canister was investigated, employing a double spiral structure to redirect waste heat from the PEMFC to the MH. The remaining heat was harnessed for seawater desalination via a Multi-Stage Flash Desalination (MSF) apparatus. By analyzing the operation of the PEMFC at various power points and dividing the hydrogen release process into stages A, B, and C, we investigate the time evolution law of each parameter of the MH bed. We evaluate the effects of the PEMFC operating parameters and the double spiral geometry parameters on the system's stable operation duration. The results reveal that the current density of the PEMFC significantly affected the system performance, while its operating temperature exerted a limited impact; the system exhibits greater suitability for long-term, low-power operation mode. Furthermore, the system's efficiency can reach up to 81.7%, with a stable working time of 6790 seconds. Considering the heat exchange in the MH canister, the double spiral heat exchanger's position occupancy problem, and the double-tube synergistic effect together, the MH is divided into α, β, and γ zones, and the heat exchanger geometrical parameters are optimized for the study. It is recommended to employ a tube diameter of 0.015 m and a coil spacing of 0.030 m for the heat exchanger. The coupling system of a Proton Exchange Membrane Fuel Cell (PEMFC) and Metal Hydride (MH) canister was investigated, employing a double spiral structure to redirect waste heat from the PEMFC to the MH.</description><identifier>ISSN: 2398-4902</identifier><identifier>EISSN: 2398-4902</identifier><identifier>DOI: 10.1039/d3se01388j</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Coupling ; Desalination ; Fuel cells ; Fuel technology ; Heat ; Heat exchange ; Heat exchangers ; Metal hydrides ; Operating temperature ; Parameters ; Proton exchange membrane fuel cells ; Protons ; Seawater ; Synergistic effect</subject><ispartof>Sustainable energy &amp; fuels, 2024-01, Vol.8 (2), p.322-346</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-39449a96424dd1d72417769a22d6846066fbd208a474620f5b493168f1da867b3</cites><orcidid>0000-0001-6955-4296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Wang, Jin-Xin</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Li, Shi-Yu</creatorcontrib><creatorcontrib>Cheng, Yong-Pan</creatorcontrib><title>Study of a proton exchange membrane fuel cell and metal hydride system based on double spiral structure coupling</title><title>Sustainable energy &amp; fuels</title><description>The coupling system of a Proton Exchange Membrane Fuel Cell (PEMFC) and Metal Hydride (MH) canister was investigated, employing a double spiral structure to redirect waste heat from the PEMFC to the MH. The remaining heat was harnessed for seawater desalination via a Multi-Stage Flash Desalination (MSF) apparatus. By analyzing the operation of the PEMFC at various power points and dividing the hydrogen release process into stages A, B, and C, we investigate the time evolution law of each parameter of the MH bed. We evaluate the effects of the PEMFC operating parameters and the double spiral geometry parameters on the system's stable operation duration. The results reveal that the current density of the PEMFC significantly affected the system performance, while its operating temperature exerted a limited impact; the system exhibits greater suitability for long-term, low-power operation mode. Furthermore, the system's efficiency can reach up to 81.7%, with a stable working time of 6790 seconds. Considering the heat exchange in the MH canister, the double spiral heat exchanger's position occupancy problem, and the double-tube synergistic effect together, the MH is divided into α, β, and γ zones, and the heat exchanger geometrical parameters are optimized for the study. It is recommended to employ a tube diameter of 0.015 m and a coil spacing of 0.030 m for the heat exchanger. The coupling system of a Proton Exchange Membrane Fuel Cell (PEMFC) and Metal Hydride (MH) canister was investigated, employing a double spiral structure to redirect waste heat from the PEMFC to the MH.</description><subject>Coupling</subject><subject>Desalination</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Heat</subject><subject>Heat exchange</subject><subject>Heat exchangers</subject><subject>Metal hydrides</subject><subject>Operating temperature</subject><subject>Parameters</subject><subject>Proton exchange membrane fuel cells</subject><subject>Protons</subject><subject>Seawater</subject><subject>Synergistic effect</subject><issn>2398-4902</issn><issn>2398-4902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtLAzEQh4MoWGov3oWAN2E1r002R6n1RcFD9bxkN0m7ZV_mAe5_b7Sinmb48c0M8wFwjtE1RlTeaOoNwrQo9kdgRqgsMiYROf7Xn4KF93uEEMGEkVzMwLgJUU9wsFDB0Q1h6KH5qHeq3xrYma5yqjfQRtPC2rQtVL1OcVAt3E3aNdpAP_lgOlgpbzRM03qIVZvisXGJ8sHFOkRnYD3EsW367Rk4sar1ZvFT5-DtfvW6fMzWLw9Py9t1VhOGQkYlY1JJzgjTGmtBGBaCS0WI5gXjiHNbaYIKxQTjBNm8YpJiXlisVcFFRefg8rA3ffUejQ_lfoiuTydLInGOkaCCJ-rqQNVu8N4ZW46u6ZSbSozKL6nlHd2svqU-J_jiADtf_3J_0uknJn1zMw</recordid><startdate>20240116</startdate><enddate>20240116</enddate><creator>Wang, Xiao</creator><creator>Wang, Jin-Xin</creator><creator>Zhang, Hao</creator><creator>Li, Shi-Yu</creator><creator>Cheng, Yong-Pan</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-6955-4296</orcidid></search><sort><creationdate>20240116</creationdate><title>Study of a proton exchange membrane fuel cell and metal hydride system based on double spiral structure coupling</title><author>Wang, Xiao ; Wang, Jin-Xin ; Zhang, Hao ; Li, Shi-Yu ; Cheng, Yong-Pan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-39449a96424dd1d72417769a22d6846066fbd208a474620f5b493168f1da867b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coupling</topic><topic>Desalination</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Heat</topic><topic>Heat exchange</topic><topic>Heat exchangers</topic><topic>Metal hydrides</topic><topic>Operating temperature</topic><topic>Parameters</topic><topic>Proton exchange membrane fuel cells</topic><topic>Protons</topic><topic>Seawater</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Wang, Jin-Xin</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Li, Shi-Yu</creatorcontrib><creatorcontrib>Cheng, Yong-Pan</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Sustainable energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiao</au><au>Wang, Jin-Xin</au><au>Zhang, Hao</au><au>Li, Shi-Yu</au><au>Cheng, Yong-Pan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of a proton exchange membrane fuel cell and metal hydride system based on double spiral structure coupling</atitle><jtitle>Sustainable energy &amp; fuels</jtitle><date>2024-01-16</date><risdate>2024</risdate><volume>8</volume><issue>2</issue><spage>322</spage><epage>346</epage><pages>322-346</pages><issn>2398-4902</issn><eissn>2398-4902</eissn><abstract>The coupling system of a Proton Exchange Membrane Fuel Cell (PEMFC) and Metal Hydride (MH) canister was investigated, employing a double spiral structure to redirect waste heat from the PEMFC to the MH. The remaining heat was harnessed for seawater desalination via a Multi-Stage Flash Desalination (MSF) apparatus. By analyzing the operation of the PEMFC at various power points and dividing the hydrogen release process into stages A, B, and C, we investigate the time evolution law of each parameter of the MH bed. We evaluate the effects of the PEMFC operating parameters and the double spiral geometry parameters on the system's stable operation duration. The results reveal that the current density of the PEMFC significantly affected the system performance, while its operating temperature exerted a limited impact; the system exhibits greater suitability for long-term, low-power operation mode. Furthermore, the system's efficiency can reach up to 81.7%, with a stable working time of 6790 seconds. Considering the heat exchange in the MH canister, the double spiral heat exchanger's position occupancy problem, and the double-tube synergistic effect together, the MH is divided into α, β, and γ zones, and the heat exchanger geometrical parameters are optimized for the study. It is recommended to employ a tube diameter of 0.015 m and a coil spacing of 0.030 m for the heat exchanger. The coupling system of a Proton Exchange Membrane Fuel Cell (PEMFC) and Metal Hydride (MH) canister was investigated, employing a double spiral structure to redirect waste heat from the PEMFC to the MH.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3se01388j</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-6955-4296</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2398-4902
ispartof Sustainable energy & fuels, 2024-01, Vol.8 (2), p.322-346
issn 2398-4902
2398-4902
language eng
recordid cdi_proquest_journals_2915107376
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Coupling
Desalination
Fuel cells
Fuel technology
Heat
Heat exchange
Heat exchangers
Metal hydrides
Operating temperature
Parameters
Proton exchange membrane fuel cells
Protons
Seawater
Synergistic effect
title Study of a proton exchange membrane fuel cell and metal hydride system based on double spiral structure coupling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A06%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20a%20proton%20exchange%20membrane%20fuel%20cell%20and%20metal%20hydride%20system%20based%20on%20double%20spiral%20structure%20coupling&rft.jtitle=Sustainable%20energy%20&%20fuels&rft.au=Wang,%20Xiao&rft.date=2024-01-16&rft.volume=8&rft.issue=2&rft.spage=322&rft.epage=346&rft.pages=322-346&rft.issn=2398-4902&rft.eissn=2398-4902&rft_id=info:doi/10.1039/d3se01388j&rft_dat=%3Cproquest_cross%3E2915107376%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c240t-39449a96424dd1d72417769a22d6846066fbd208a474620f5b493168f1da867b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2915107376&rft_id=info:pmid/&rfr_iscdi=true