Loading…

Noninvasive Urinary Bladder Volume Estimation With Artifact-Suppressed Bioimpedance Measurements

Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or ultrasound measurements performed by highly skilled personnel. Catheterization bears high risks of infection while intermittent ultrasound measu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2024-01, Vol.24 (2), p.1633-1643
Main Authors: Dheman, Kanika, Walser, Stefan, Mayer, Philipp, Eggimann, Manuel, Kozomara, Marko, Franke, Denise, Hermanns, Thomas, Sax, Hugo, Schürle, Simone, Magno, Michele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c273t-9fc24fc03a451452a0e1b905c5340a61feed56fbd61fb0c658fd6d081ceb94ab3
cites cdi_FETCH-LOGICAL-c273t-9fc24fc03a451452a0e1b905c5340a61feed56fbd61fb0c658fd6d081ceb94ab3
container_end_page 1643
container_issue 2
container_start_page 1633
container_title IEEE sensors journal
container_volume 24
creator Dheman, Kanika
Walser, Stefan
Mayer, Philipp
Eggimann, Manuel
Kozomara, Marko
Franke, Denise
Hermanns, Thomas
Sax, Hugo
Schürle, Simone
Magno, Michele
description Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or ultrasound measurements performed by highly skilled personnel. Catheterization bears high risks of infection while intermittent ultrasound measures and manual recording are time-consuming and might miss early signs of kidney malfunction. Bioimpedance (BI) measurements may serve as a noninvasive alternative for measuring urine volume in vivo. However, limited robustness has prevented its clinical translation. Here, a deep learning-based algorithm is presented that processes the local BI of the lower abdomen and suppresses artifacts to measure the bladder volume quantitatively, noninvasively, and without the continuous need for additional personnel. A tetrapolar BI wearable system was used to collect continuous bladder volume data from three healthy subjects to demonstrate the feasibility of operation, while clinical gold standards of urodynamic ([Formula Omitted] – 6) and uroflowmetry tests ([Formula Omitted] – 8) provided the ground truth. Optimized location for electrode placement and a model for the change in BI with changing bladder volume are deduced. The average error for full bladder volume estimation and for residual volume estimation was [Formula Omitted] 87.6 mL, thus, comparable to commercial portable ultrasound devices (Bland Altman analysis showed a bias of −5.2 mL with LoA between 119.7 and −130.1 mL), while providing the additional benefit of hands-free, noninvasive, and continuous bladder volume estimation. The combination of the wearable BI sensor node and the presented algorithm provides an attractive alternative to current standard of care with potential benefits in providing insights into kidney function.
doi_str_mv 10.1109/JSEN.2023.3324819
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2915734672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915734672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-9fc24fc03a451452a0e1b905c5340a61feed56fbd61fb0c658fd6d081ceb94ab3</originalsourceid><addsrcrecordid>eNotkMlOwzAYhC0EEqXwANwscU7xmuXYVmVTKYdS4GYc-49w1SbBdir17UlUTjOH0YzmQ-iWkgmlpLh_WS9WE0YYn3DORE6LMzSiUuYJzUR-PnhOEsGzr0t0FcKWEFpkMhuh71VTu_qggzsA3nhXa3_Es522Fjz-aHbdHvAiRLfX0TU1_nTxB099dJU2MVl3beshBLB45hq3b8Hq2gB-BR06D3uoY7hGF5XeBbj51zHaPCze50_J8u3xeT5dJoZlPCZFZZioDOFaSCok0wRoWRBpJBdEp7QCsDKtStvbkphU5pVNLcmpgbIQuuRjdHfqbX3z20GIatt0vu4nFSuozLhIM9an6CllfBOCh0q1vv_mj4oSNYBUA0g1gFT_IPkf4OBoWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915734672</pqid></control><display><type>article</type><title>Noninvasive Urinary Bladder Volume Estimation With Artifact-Suppressed Bioimpedance Measurements</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dheman, Kanika ; Walser, Stefan ; Mayer, Philipp ; Eggimann, Manuel ; Kozomara, Marko ; Franke, Denise ; Hermanns, Thomas ; Sax, Hugo ; Schürle, Simone ; Magno, Michele</creator><creatorcontrib>Dheman, Kanika ; Walser, Stefan ; Mayer, Philipp ; Eggimann, Manuel ; Kozomara, Marko ; Franke, Denise ; Hermanns, Thomas ; Sax, Hugo ; Schürle, Simone ; Magno, Michele</creatorcontrib><description>Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or ultrasound measurements performed by highly skilled personnel. Catheterization bears high risks of infection while intermittent ultrasound measures and manual recording are time-consuming and might miss early signs of kidney malfunction. Bioimpedance (BI) measurements may serve as a noninvasive alternative for measuring urine volume in vivo. However, limited robustness has prevented its clinical translation. Here, a deep learning-based algorithm is presented that processes the local BI of the lower abdomen and suppresses artifacts to measure the bladder volume quantitatively, noninvasively, and without the continuous need for additional personnel. A tetrapolar BI wearable system was used to collect continuous bladder volume data from three healthy subjects to demonstrate the feasibility of operation, while clinical gold standards of urodynamic ([Formula Omitted] – 6) and uroflowmetry tests ([Formula Omitted] – 8) provided the ground truth. Optimized location for electrode placement and a model for the change in BI with changing bladder volume are deduced. The average error for full bladder volume estimation and for residual volume estimation was [Formula Omitted] 87.6 mL, thus, comparable to commercial portable ultrasound devices (Bland Altman analysis showed a bias of −5.2 mL with LoA between 119.7 and −130.1 mL), while providing the additional benefit of hands-free, noninvasive, and continuous bladder volume estimation. The combination of the wearable BI sensor node and the presented algorithm provides an attractive alternative to current standard of care with potential benefits in providing insights into kidney function.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3324819</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Algorithms ; Bladder ; Catheterization ; In vivo methods and tests ; Intubation ; Kidneys ; Machine learning ; Personnel ; Portable equipment ; Ultrasonic imaging ; Urine ; Wearable technology</subject><ispartof>IEEE sensors journal, 2024-01, Vol.24 (2), p.1633-1643</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-9fc24fc03a451452a0e1b905c5340a61feed56fbd61fb0c658fd6d081ceb94ab3</citedby><cites>FETCH-LOGICAL-c273t-9fc24fc03a451452a0e1b905c5340a61feed56fbd61fb0c658fd6d081ceb94ab3</cites><orcidid>0000-0002-3352-0489 ; 0000-0001-5693-1603 ; 0000-0002-4554-7937 ; 0000-0003-0368-8923 ; 0000-0002-1532-2198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dheman, Kanika</creatorcontrib><creatorcontrib>Walser, Stefan</creatorcontrib><creatorcontrib>Mayer, Philipp</creatorcontrib><creatorcontrib>Eggimann, Manuel</creatorcontrib><creatorcontrib>Kozomara, Marko</creatorcontrib><creatorcontrib>Franke, Denise</creatorcontrib><creatorcontrib>Hermanns, Thomas</creatorcontrib><creatorcontrib>Sax, Hugo</creatorcontrib><creatorcontrib>Schürle, Simone</creatorcontrib><creatorcontrib>Magno, Michele</creatorcontrib><title>Noninvasive Urinary Bladder Volume Estimation With Artifact-Suppressed Bioimpedance Measurements</title><title>IEEE sensors journal</title><description>Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or ultrasound measurements performed by highly skilled personnel. Catheterization bears high risks of infection while intermittent ultrasound measures and manual recording are time-consuming and might miss early signs of kidney malfunction. Bioimpedance (BI) measurements may serve as a noninvasive alternative for measuring urine volume in vivo. However, limited robustness has prevented its clinical translation. Here, a deep learning-based algorithm is presented that processes the local BI of the lower abdomen and suppresses artifacts to measure the bladder volume quantitatively, noninvasively, and without the continuous need for additional personnel. A tetrapolar BI wearable system was used to collect continuous bladder volume data from three healthy subjects to demonstrate the feasibility of operation, while clinical gold standards of urodynamic ([Formula Omitted] – 6) and uroflowmetry tests ([Formula Omitted] – 8) provided the ground truth. Optimized location for electrode placement and a model for the change in BI with changing bladder volume are deduced. The average error for full bladder volume estimation and for residual volume estimation was [Formula Omitted] 87.6 mL, thus, comparable to commercial portable ultrasound devices (Bland Altman analysis showed a bias of −5.2 mL with LoA between 119.7 and −130.1 mL), while providing the additional benefit of hands-free, noninvasive, and continuous bladder volume estimation. The combination of the wearable BI sensor node and the presented algorithm provides an attractive alternative to current standard of care with potential benefits in providing insights into kidney function.</description><subject>Algorithms</subject><subject>Bladder</subject><subject>Catheterization</subject><subject>In vivo methods and tests</subject><subject>Intubation</subject><subject>Kidneys</subject><subject>Machine learning</subject><subject>Personnel</subject><subject>Portable equipment</subject><subject>Ultrasonic imaging</subject><subject>Urine</subject><subject>Wearable technology</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkMlOwzAYhC0EEqXwANwscU7xmuXYVmVTKYdS4GYc-49w1SbBdir17UlUTjOH0YzmQ-iWkgmlpLh_WS9WE0YYn3DORE6LMzSiUuYJzUR-PnhOEsGzr0t0FcKWEFpkMhuh71VTu_qggzsA3nhXa3_Es522Fjz-aHbdHvAiRLfX0TU1_nTxB099dJU2MVl3beshBLB45hq3b8Hq2gB-BR06D3uoY7hGF5XeBbj51zHaPCze50_J8u3xeT5dJoZlPCZFZZioDOFaSCok0wRoWRBpJBdEp7QCsDKtStvbkphU5pVNLcmpgbIQuuRjdHfqbX3z20GIatt0vu4nFSuozLhIM9an6CllfBOCh0q1vv_mj4oSNYBUA0g1gFT_IPkf4OBoWg</recordid><startdate>20240115</startdate><enddate>20240115</enddate><creator>Dheman, Kanika</creator><creator>Walser, Stefan</creator><creator>Mayer, Philipp</creator><creator>Eggimann, Manuel</creator><creator>Kozomara, Marko</creator><creator>Franke, Denise</creator><creator>Hermanns, Thomas</creator><creator>Sax, Hugo</creator><creator>Schürle, Simone</creator><creator>Magno, Michele</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3352-0489</orcidid><orcidid>https://orcid.org/0000-0001-5693-1603</orcidid><orcidid>https://orcid.org/0000-0002-4554-7937</orcidid><orcidid>https://orcid.org/0000-0003-0368-8923</orcidid><orcidid>https://orcid.org/0000-0002-1532-2198</orcidid></search><sort><creationdate>20240115</creationdate><title>Noninvasive Urinary Bladder Volume Estimation With Artifact-Suppressed Bioimpedance Measurements</title><author>Dheman, Kanika ; Walser, Stefan ; Mayer, Philipp ; Eggimann, Manuel ; Kozomara, Marko ; Franke, Denise ; Hermanns, Thomas ; Sax, Hugo ; Schürle, Simone ; Magno, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-9fc24fc03a451452a0e1b905c5340a61feed56fbd61fb0c658fd6d081ceb94ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Bladder</topic><topic>Catheterization</topic><topic>In vivo methods and tests</topic><topic>Intubation</topic><topic>Kidneys</topic><topic>Machine learning</topic><topic>Personnel</topic><topic>Portable equipment</topic><topic>Ultrasonic imaging</topic><topic>Urine</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dheman, Kanika</creatorcontrib><creatorcontrib>Walser, Stefan</creatorcontrib><creatorcontrib>Mayer, Philipp</creatorcontrib><creatorcontrib>Eggimann, Manuel</creatorcontrib><creatorcontrib>Kozomara, Marko</creatorcontrib><creatorcontrib>Franke, Denise</creatorcontrib><creatorcontrib>Hermanns, Thomas</creatorcontrib><creatorcontrib>Sax, Hugo</creatorcontrib><creatorcontrib>Schürle, Simone</creatorcontrib><creatorcontrib>Magno, Michele</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dheman, Kanika</au><au>Walser, Stefan</au><au>Mayer, Philipp</au><au>Eggimann, Manuel</au><au>Kozomara, Marko</au><au>Franke, Denise</au><au>Hermanns, Thomas</au><au>Sax, Hugo</au><au>Schürle, Simone</au><au>Magno, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noninvasive Urinary Bladder Volume Estimation With Artifact-Suppressed Bioimpedance Measurements</atitle><jtitle>IEEE sensors journal</jtitle><date>2024-01-15</date><risdate>2024</risdate><volume>24</volume><issue>2</issue><spage>1633</spage><epage>1643</epage><pages>1633-1643</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><abstract>Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or ultrasound measurements performed by highly skilled personnel. Catheterization bears high risks of infection while intermittent ultrasound measures and manual recording are time-consuming and might miss early signs of kidney malfunction. Bioimpedance (BI) measurements may serve as a noninvasive alternative for measuring urine volume in vivo. However, limited robustness has prevented its clinical translation. Here, a deep learning-based algorithm is presented that processes the local BI of the lower abdomen and suppresses artifacts to measure the bladder volume quantitatively, noninvasively, and without the continuous need for additional personnel. A tetrapolar BI wearable system was used to collect continuous bladder volume data from three healthy subjects to demonstrate the feasibility of operation, while clinical gold standards of urodynamic ([Formula Omitted] – 6) and uroflowmetry tests ([Formula Omitted] – 8) provided the ground truth. Optimized location for electrode placement and a model for the change in BI with changing bladder volume are deduced. The average error for full bladder volume estimation and for residual volume estimation was [Formula Omitted] 87.6 mL, thus, comparable to commercial portable ultrasound devices (Bland Altman analysis showed a bias of −5.2 mL with LoA between 119.7 and −130.1 mL), while providing the additional benefit of hands-free, noninvasive, and continuous bladder volume estimation. The combination of the wearable BI sensor node and the presented algorithm provides an attractive alternative to current standard of care with potential benefits in providing insights into kidney function.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/JSEN.2023.3324819</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3352-0489</orcidid><orcidid>https://orcid.org/0000-0001-5693-1603</orcidid><orcidid>https://orcid.org/0000-0002-4554-7937</orcidid><orcidid>https://orcid.org/0000-0003-0368-8923</orcidid><orcidid>https://orcid.org/0000-0002-1532-2198</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-01, Vol.24 (2), p.1633-1643
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2915734672
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Bladder
Catheterization
In vivo methods and tests
Intubation
Kidneys
Machine learning
Personnel
Portable equipment
Ultrasonic imaging
Urine
Wearable technology
title Noninvasive Urinary Bladder Volume Estimation With Artifact-Suppressed Bioimpedance Measurements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noninvasive%20Urinary%20Bladder%20Volume%20Estimation%20With%20Artifact-Suppressed%20Bioimpedance%20Measurements&rft.jtitle=IEEE%20sensors%20journal&rft.au=Dheman,%20Kanika&rft.date=2024-01-15&rft.volume=24&rft.issue=2&rft.spage=1633&rft.epage=1643&rft.pages=1633-1643&rft.issn=1530-437X&rft.eissn=1558-1748&rft_id=info:doi/10.1109/JSEN.2023.3324819&rft_dat=%3Cproquest_cross%3E2915734672%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-9fc24fc03a451452a0e1b905c5340a61feed56fbd61fb0c658fd6d081ceb94ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2915734672&rft_id=info:pmid/&rfr_iscdi=true