Loading…
Noninvasive Urinary Bladder Volume Estimation With Artifact-Suppressed Bioimpedance Measurements
Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or ultrasound measurements performed by highly skilled personnel. Catheterization bears high risks of infection while intermittent ultrasound measu...
Saved in:
Published in: | IEEE sensors journal 2024-01, Vol.24 (2), p.1633-1643 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c273t-9fc24fc03a451452a0e1b905c5340a61feed56fbd61fb0c658fd6d081ceb94ab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c273t-9fc24fc03a451452a0e1b905c5340a61feed56fbd61fb0c658fd6d081ceb94ab3 |
container_end_page | 1643 |
container_issue | 2 |
container_start_page | 1633 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Dheman, Kanika Walser, Stefan Mayer, Philipp Eggimann, Manuel Kozomara, Marko Franke, Denise Hermanns, Thomas Sax, Hugo Schürle, Simone Magno, Michele |
description | Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or ultrasound measurements performed by highly skilled personnel. Catheterization bears high risks of infection while intermittent ultrasound measures and manual recording are time-consuming and might miss early signs of kidney malfunction. Bioimpedance (BI) measurements may serve as a noninvasive alternative for measuring urine volume in vivo. However, limited robustness has prevented its clinical translation. Here, a deep learning-based algorithm is presented that processes the local BI of the lower abdomen and suppresses artifacts to measure the bladder volume quantitatively, noninvasively, and without the continuous need for additional personnel. A tetrapolar BI wearable system was used to collect continuous bladder volume data from three healthy subjects to demonstrate the feasibility of operation, while clinical gold standards of urodynamic ([Formula Omitted] – 6) and uroflowmetry tests ([Formula Omitted] – 8) provided the ground truth. Optimized location for electrode placement and a model for the change in BI with changing bladder volume are deduced. The average error for full bladder volume estimation and for residual volume estimation was [Formula Omitted] 87.6 mL, thus, comparable to commercial portable ultrasound devices (Bland Altman analysis showed a bias of −5.2 mL with LoA between 119.7 and −130.1 mL), while providing the additional benefit of hands-free, noninvasive, and continuous bladder volume estimation. The combination of the wearable BI sensor node and the presented algorithm provides an attractive alternative to current standard of care with potential benefits in providing insights into kidney function. |
doi_str_mv | 10.1109/JSEN.2023.3324819 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2915734672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915734672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-9fc24fc03a451452a0e1b905c5340a61feed56fbd61fb0c658fd6d081ceb94ab3</originalsourceid><addsrcrecordid>eNotkMlOwzAYhC0EEqXwANwscU7xmuXYVmVTKYdS4GYc-49w1SbBdir17UlUTjOH0YzmQ-iWkgmlpLh_WS9WE0YYn3DORE6LMzSiUuYJzUR-PnhOEsGzr0t0FcKWEFpkMhuh71VTu_qggzsA3nhXa3_Es522Fjz-aHbdHvAiRLfX0TU1_nTxB099dJU2MVl3beshBLB45hq3b8Hq2gB-BR06D3uoY7hGF5XeBbj51zHaPCze50_J8u3xeT5dJoZlPCZFZZioDOFaSCok0wRoWRBpJBdEp7QCsDKtStvbkphU5pVNLcmpgbIQuuRjdHfqbX3z20GIatt0vu4nFSuozLhIM9an6CllfBOCh0q1vv_mj4oSNYBUA0g1gFT_IPkf4OBoWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915734672</pqid></control><display><type>article</type><title>Noninvasive Urinary Bladder Volume Estimation With Artifact-Suppressed Bioimpedance Measurements</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dheman, Kanika ; Walser, Stefan ; Mayer, Philipp ; Eggimann, Manuel ; Kozomara, Marko ; Franke, Denise ; Hermanns, Thomas ; Sax, Hugo ; Schürle, Simone ; Magno, Michele</creator><creatorcontrib>Dheman, Kanika ; Walser, Stefan ; Mayer, Philipp ; Eggimann, Manuel ; Kozomara, Marko ; Franke, Denise ; Hermanns, Thomas ; Sax, Hugo ; Schürle, Simone ; Magno, Michele</creatorcontrib><description>Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or ultrasound measurements performed by highly skilled personnel. Catheterization bears high risks of infection while intermittent ultrasound measures and manual recording are time-consuming and might miss early signs of kidney malfunction. Bioimpedance (BI) measurements may serve as a noninvasive alternative for measuring urine volume in vivo. However, limited robustness has prevented its clinical translation. Here, a deep learning-based algorithm is presented that processes the local BI of the lower abdomen and suppresses artifacts to measure the bladder volume quantitatively, noninvasively, and without the continuous need for additional personnel. A tetrapolar BI wearable system was used to collect continuous bladder volume data from three healthy subjects to demonstrate the feasibility of operation, while clinical gold standards of urodynamic ([Formula Omitted] – 6) and uroflowmetry tests ([Formula Omitted] – 8) provided the ground truth. Optimized location for electrode placement and a model for the change in BI with changing bladder volume are deduced. The average error for full bladder volume estimation and for residual volume estimation was [Formula Omitted] 87.6 mL, thus, comparable to commercial portable ultrasound devices (Bland Altman analysis showed a bias of −5.2 mL with LoA between 119.7 and −130.1 mL), while providing the additional benefit of hands-free, noninvasive, and continuous bladder volume estimation. The combination of the wearable BI sensor node and the presented algorithm provides an attractive alternative to current standard of care with potential benefits in providing insights into kidney function.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3324819</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Algorithms ; Bladder ; Catheterization ; In vivo methods and tests ; Intubation ; Kidneys ; Machine learning ; Personnel ; Portable equipment ; Ultrasonic imaging ; Urine ; Wearable technology</subject><ispartof>IEEE sensors journal, 2024-01, Vol.24 (2), p.1633-1643</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-9fc24fc03a451452a0e1b905c5340a61feed56fbd61fb0c658fd6d081ceb94ab3</citedby><cites>FETCH-LOGICAL-c273t-9fc24fc03a451452a0e1b905c5340a61feed56fbd61fb0c658fd6d081ceb94ab3</cites><orcidid>0000-0002-3352-0489 ; 0000-0001-5693-1603 ; 0000-0002-4554-7937 ; 0000-0003-0368-8923 ; 0000-0002-1532-2198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dheman, Kanika</creatorcontrib><creatorcontrib>Walser, Stefan</creatorcontrib><creatorcontrib>Mayer, Philipp</creatorcontrib><creatorcontrib>Eggimann, Manuel</creatorcontrib><creatorcontrib>Kozomara, Marko</creatorcontrib><creatorcontrib>Franke, Denise</creatorcontrib><creatorcontrib>Hermanns, Thomas</creatorcontrib><creatorcontrib>Sax, Hugo</creatorcontrib><creatorcontrib>Schürle, Simone</creatorcontrib><creatorcontrib>Magno, Michele</creatorcontrib><title>Noninvasive Urinary Bladder Volume Estimation With Artifact-Suppressed Bioimpedance Measurements</title><title>IEEE sensors journal</title><description>Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or ultrasound measurements performed by highly skilled personnel. Catheterization bears high risks of infection while intermittent ultrasound measures and manual recording are time-consuming and might miss early signs of kidney malfunction. Bioimpedance (BI) measurements may serve as a noninvasive alternative for measuring urine volume in vivo. However, limited robustness has prevented its clinical translation. Here, a deep learning-based algorithm is presented that processes the local BI of the lower abdomen and suppresses artifacts to measure the bladder volume quantitatively, noninvasively, and without the continuous need for additional personnel. A tetrapolar BI wearable system was used to collect continuous bladder volume data from three healthy subjects to demonstrate the feasibility of operation, while clinical gold standards of urodynamic ([Formula Omitted] – 6) and uroflowmetry tests ([Formula Omitted] – 8) provided the ground truth. Optimized location for electrode placement and a model for the change in BI with changing bladder volume are deduced. The average error for full bladder volume estimation and for residual volume estimation was [Formula Omitted] 87.6 mL, thus, comparable to commercial portable ultrasound devices (Bland Altman analysis showed a bias of −5.2 mL with LoA between 119.7 and −130.1 mL), while providing the additional benefit of hands-free, noninvasive, and continuous bladder volume estimation. The combination of the wearable BI sensor node and the presented algorithm provides an attractive alternative to current standard of care with potential benefits in providing insights into kidney function.</description><subject>Algorithms</subject><subject>Bladder</subject><subject>Catheterization</subject><subject>In vivo methods and tests</subject><subject>Intubation</subject><subject>Kidneys</subject><subject>Machine learning</subject><subject>Personnel</subject><subject>Portable equipment</subject><subject>Ultrasonic imaging</subject><subject>Urine</subject><subject>Wearable technology</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkMlOwzAYhC0EEqXwANwscU7xmuXYVmVTKYdS4GYc-49w1SbBdir17UlUTjOH0YzmQ-iWkgmlpLh_WS9WE0YYn3DORE6LMzSiUuYJzUR-PnhOEsGzr0t0FcKWEFpkMhuh71VTu_qggzsA3nhXa3_Es522Fjz-aHbdHvAiRLfX0TU1_nTxB099dJU2MVl3beshBLB45hq3b8Hq2gB-BR06D3uoY7hGF5XeBbj51zHaPCze50_J8u3xeT5dJoZlPCZFZZioDOFaSCok0wRoWRBpJBdEp7QCsDKtStvbkphU5pVNLcmpgbIQuuRjdHfqbX3z20GIatt0vu4nFSuozLhIM9an6CllfBOCh0q1vv_mj4oSNYBUA0g1gFT_IPkf4OBoWg</recordid><startdate>20240115</startdate><enddate>20240115</enddate><creator>Dheman, Kanika</creator><creator>Walser, Stefan</creator><creator>Mayer, Philipp</creator><creator>Eggimann, Manuel</creator><creator>Kozomara, Marko</creator><creator>Franke, Denise</creator><creator>Hermanns, Thomas</creator><creator>Sax, Hugo</creator><creator>Schürle, Simone</creator><creator>Magno, Michele</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3352-0489</orcidid><orcidid>https://orcid.org/0000-0001-5693-1603</orcidid><orcidid>https://orcid.org/0000-0002-4554-7937</orcidid><orcidid>https://orcid.org/0000-0003-0368-8923</orcidid><orcidid>https://orcid.org/0000-0002-1532-2198</orcidid></search><sort><creationdate>20240115</creationdate><title>Noninvasive Urinary Bladder Volume Estimation With Artifact-Suppressed Bioimpedance Measurements</title><author>Dheman, Kanika ; Walser, Stefan ; Mayer, Philipp ; Eggimann, Manuel ; Kozomara, Marko ; Franke, Denise ; Hermanns, Thomas ; Sax, Hugo ; Schürle, Simone ; Magno, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-9fc24fc03a451452a0e1b905c5340a61feed56fbd61fb0c658fd6d081ceb94ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Bladder</topic><topic>Catheterization</topic><topic>In vivo methods and tests</topic><topic>Intubation</topic><topic>Kidneys</topic><topic>Machine learning</topic><topic>Personnel</topic><topic>Portable equipment</topic><topic>Ultrasonic imaging</topic><topic>Urine</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dheman, Kanika</creatorcontrib><creatorcontrib>Walser, Stefan</creatorcontrib><creatorcontrib>Mayer, Philipp</creatorcontrib><creatorcontrib>Eggimann, Manuel</creatorcontrib><creatorcontrib>Kozomara, Marko</creatorcontrib><creatorcontrib>Franke, Denise</creatorcontrib><creatorcontrib>Hermanns, Thomas</creatorcontrib><creatorcontrib>Sax, Hugo</creatorcontrib><creatorcontrib>Schürle, Simone</creatorcontrib><creatorcontrib>Magno, Michele</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dheman, Kanika</au><au>Walser, Stefan</au><au>Mayer, Philipp</au><au>Eggimann, Manuel</au><au>Kozomara, Marko</au><au>Franke, Denise</au><au>Hermanns, Thomas</au><au>Sax, Hugo</au><au>Schürle, Simone</au><au>Magno, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noninvasive Urinary Bladder Volume Estimation With Artifact-Suppressed Bioimpedance Measurements</atitle><jtitle>IEEE sensors journal</jtitle><date>2024-01-15</date><risdate>2024</risdate><volume>24</volume><issue>2</issue><spage>1633</spage><epage>1643</epage><pages>1633-1643</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><abstract>Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or ultrasound measurements performed by highly skilled personnel. Catheterization bears high risks of infection while intermittent ultrasound measures and manual recording are time-consuming and might miss early signs of kidney malfunction. Bioimpedance (BI) measurements may serve as a noninvasive alternative for measuring urine volume in vivo. However, limited robustness has prevented its clinical translation. Here, a deep learning-based algorithm is presented that processes the local BI of the lower abdomen and suppresses artifacts to measure the bladder volume quantitatively, noninvasively, and without the continuous need for additional personnel. A tetrapolar BI wearable system was used to collect continuous bladder volume data from three healthy subjects to demonstrate the feasibility of operation, while clinical gold standards of urodynamic ([Formula Omitted] – 6) and uroflowmetry tests ([Formula Omitted] – 8) provided the ground truth. Optimized location for electrode placement and a model for the change in BI with changing bladder volume are deduced. The average error for full bladder volume estimation and for residual volume estimation was [Formula Omitted] 87.6 mL, thus, comparable to commercial portable ultrasound devices (Bland Altman analysis showed a bias of −5.2 mL with LoA between 119.7 and −130.1 mL), while providing the additional benefit of hands-free, noninvasive, and continuous bladder volume estimation. The combination of the wearable BI sensor node and the presented algorithm provides an attractive alternative to current standard of care with potential benefits in providing insights into kidney function.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/JSEN.2023.3324819</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3352-0489</orcidid><orcidid>https://orcid.org/0000-0001-5693-1603</orcidid><orcidid>https://orcid.org/0000-0002-4554-7937</orcidid><orcidid>https://orcid.org/0000-0003-0368-8923</orcidid><orcidid>https://orcid.org/0000-0002-1532-2198</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-01, Vol.24 (2), p.1633-1643 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2915734672 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Bladder Catheterization In vivo methods and tests Intubation Kidneys Machine learning Personnel Portable equipment Ultrasonic imaging Urine Wearable technology |
title | Noninvasive Urinary Bladder Volume Estimation With Artifact-Suppressed Bioimpedance Measurements |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noninvasive%20Urinary%20Bladder%20Volume%20Estimation%20With%20Artifact-Suppressed%20Bioimpedance%20Measurements&rft.jtitle=IEEE%20sensors%20journal&rft.au=Dheman,%20Kanika&rft.date=2024-01-15&rft.volume=24&rft.issue=2&rft.spage=1633&rft.epage=1643&rft.pages=1633-1643&rft.issn=1530-437X&rft.eissn=1558-1748&rft_id=info:doi/10.1109/JSEN.2023.3324819&rft_dat=%3Cproquest_cross%3E2915734672%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-9fc24fc03a451452a0e1b905c5340a61feed56fbd61fb0c658fd6d081ceb94ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2915734672&rft_id=info:pmid/&rfr_iscdi=true |