Loading…

Tunable Kerker Scattering in a Self‐Coupled Polaritonic Metasurface

The strong coupling between electronic transitions and resonant cavity modes, facilitated by coherent energy transfer, presents unprecedented opportunities for tailoring the photoelectronic properties of constituent components. Here, the concept of Kerker effect is leveraged to demonstrate the dynam...

Full description

Saved in:
Bibliographic Details
Published in:Laser & photonics reviews 2024-01, Vol.18 (1), p.n/a
Main Authors: Shen, Fuhuan, Zhou, Yaoqiang, Ma, Jingwen, Zheng, Jiapeng, Wang, Jianfang, Chen, Zefeng, Xu, Jianbin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3574-bd552b39ef3a88c8b16bab2239b1a9e29ecda8771a6207a4fc7b0ff38c654d83
cites cdi_FETCH-LOGICAL-c3574-bd552b39ef3a88c8b16bab2239b1a9e29ecda8771a6207a4fc7b0ff38c654d83
container_end_page n/a
container_issue 1
container_start_page
container_title Laser & photonics reviews
container_volume 18
creator Shen, Fuhuan
Zhou, Yaoqiang
Ma, Jingwen
Zheng, Jiapeng
Wang, Jianfang
Chen, Zefeng
Xu, Jianbin
description The strong coupling between electronic transitions and resonant cavity modes, facilitated by coherent energy transfer, presents unprecedented opportunities for tailoring the photoelectronic properties of constituent components. Here, the concept of Kerker effect is leveraged to demonstrate the dynamic control of scattering directionality in dielectric nanostructures by tuning the exciton‐photon coupling. First, theoretical evidence for a significant modification of the scattering directionality of a dielectric metastructure engineered by excitonic polaritons is provided. As a proof of concept, self‐coupled metasurfaces composed of bulk MoS2, which exhibit a forward/backward scattering ratio up to 20, are constructed. Importantly, tunable directionality is achieved by thermally controlling the excitonic coupling to the Mie modes. The simulated results are in good agreement with the experimental measurements, and the subsequent multipole decompositions effectively elucidate the underlying mechanism, attributed to the interplay between electric and magnetic dipole modes that are modified by excitons. The findings shed light on the control of light flow in the far field through coherent light–matter interactions, thereby opening up numerous possibilities for active optical antennas and quantum emitters on a nanoscale. Tunable directional/Kerker scattering by the dielectric metasurface is achieved through the concept of strong light–matter interaction. The MoS2 self‐coupled metasurfaces are built, showing the forward/backward scattering ratio up to 20 and the thermal tunability of directional scattering. This work significantly advances the knowledge and understanding of coherent light–matter interactions for controlling the light flow in the far field.
doi_str_mv 10.1002/lpor.202300584
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2915811104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915811104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-bd552b39ef3a88c8b16bab2239b1a9e29ecda8771a6207a4fc7b0ff38c654d83</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqWwZW2JdYofedhLVJWHKGpFu7dsZ4xSQhzsRKg7PoFv5EtIVVSWzObO4twZ6SB0ScmEEsKu69aHCSOME5KJ9AiNqMh5IoSUx4ddkFN0FuNmQIbJR2i27httasCPEF4h4JXVXQehal5w1WCNV1C778-vqe_bGkq89LUOVeebyuIn6HTsg9MWztGJ03WEi98co_XtbD29T-aLu4fpzTyxPCvSxJRZxgyX4LgWwgpDc6MNY1waqiUwCbbUoiiozhkpdOpsYYhzXNg8S0vBx-hqf7YN_r2H2KmN70MzfFRM0kxQSkk6UJM9ZYOPMYBTbajedNgqStTOlNqZUgdTQ0HuCx9VDdt_aDVfLp7_uj_cb25b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915811104</pqid></control><display><type>article</type><title>Tunable Kerker Scattering in a Self‐Coupled Polaritonic Metasurface</title><source>Wiley</source><creator>Shen, Fuhuan ; Zhou, Yaoqiang ; Ma, Jingwen ; Zheng, Jiapeng ; Wang, Jianfang ; Chen, Zefeng ; Xu, Jianbin</creator><creatorcontrib>Shen, Fuhuan ; Zhou, Yaoqiang ; Ma, Jingwen ; Zheng, Jiapeng ; Wang, Jianfang ; Chen, Zefeng ; Xu, Jianbin</creatorcontrib><description>The strong coupling between electronic transitions and resonant cavity modes, facilitated by coherent energy transfer, presents unprecedented opportunities for tailoring the photoelectronic properties of constituent components. Here, the concept of Kerker effect is leveraged to demonstrate the dynamic control of scattering directionality in dielectric nanostructures by tuning the exciton‐photon coupling. First, theoretical evidence for a significant modification of the scattering directionality of a dielectric metastructure engineered by excitonic polaritons is provided. As a proof of concept, self‐coupled metasurfaces composed of bulk MoS2, which exhibit a forward/backward scattering ratio up to 20, are constructed. Importantly, tunable directionality is achieved by thermally controlling the excitonic coupling to the Mie modes. The simulated results are in good agreement with the experimental measurements, and the subsequent multipole decompositions effectively elucidate the underlying mechanism, attributed to the interplay between electric and magnetic dipole modes that are modified by excitons. The findings shed light on the control of light flow in the far field through coherent light–matter interactions, thereby opening up numerous possibilities for active optical antennas and quantum emitters on a nanoscale. Tunable directional/Kerker scattering by the dielectric metasurface is achieved through the concept of strong light–matter interaction. The MoS2 self‐coupled metasurfaces are built, showing the forward/backward scattering ratio up to 20 and the thermal tunability of directional scattering. This work significantly advances the knowledge and understanding of coherent light–matter interactions for controlling the light flow in the far field.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.202300584</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Coherent light ; Coupling ; Dynamic control ; Emitters ; Energy transfer ; Excitons ; Magnetic dipoles ; Metasurfaces ; Multipoles ; Polaritons ; Scattering ; self‐coupling ; van der Waals materials</subject><ispartof>Laser &amp; photonics reviews, 2024-01, Vol.18 (1), p.n/a</ispartof><rights>2023 The Authors. Laser &amp; Photonics Reviews published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-bd552b39ef3a88c8b16bab2239b1a9e29ecda8771a6207a4fc7b0ff38c654d83</citedby><cites>FETCH-LOGICAL-c3574-bd552b39ef3a88c8b16bab2239b1a9e29ecda8771a6207a4fc7b0ff38c654d83</cites><orcidid>0000-0002-0689-8443</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shen, Fuhuan</creatorcontrib><creatorcontrib>Zhou, Yaoqiang</creatorcontrib><creatorcontrib>Ma, Jingwen</creatorcontrib><creatorcontrib>Zheng, Jiapeng</creatorcontrib><creatorcontrib>Wang, Jianfang</creatorcontrib><creatorcontrib>Chen, Zefeng</creatorcontrib><creatorcontrib>Xu, Jianbin</creatorcontrib><title>Tunable Kerker Scattering in a Self‐Coupled Polaritonic Metasurface</title><title>Laser &amp; photonics reviews</title><description>The strong coupling between electronic transitions and resonant cavity modes, facilitated by coherent energy transfer, presents unprecedented opportunities for tailoring the photoelectronic properties of constituent components. Here, the concept of Kerker effect is leveraged to demonstrate the dynamic control of scattering directionality in dielectric nanostructures by tuning the exciton‐photon coupling. First, theoretical evidence for a significant modification of the scattering directionality of a dielectric metastructure engineered by excitonic polaritons is provided. As a proof of concept, self‐coupled metasurfaces composed of bulk MoS2, which exhibit a forward/backward scattering ratio up to 20, are constructed. Importantly, tunable directionality is achieved by thermally controlling the excitonic coupling to the Mie modes. The simulated results are in good agreement with the experimental measurements, and the subsequent multipole decompositions effectively elucidate the underlying mechanism, attributed to the interplay between electric and magnetic dipole modes that are modified by excitons. The findings shed light on the control of light flow in the far field through coherent light–matter interactions, thereby opening up numerous possibilities for active optical antennas and quantum emitters on a nanoscale. Tunable directional/Kerker scattering by the dielectric metasurface is achieved through the concept of strong light–matter interaction. The MoS2 self‐coupled metasurfaces are built, showing the forward/backward scattering ratio up to 20 and the thermal tunability of directional scattering. This work significantly advances the knowledge and understanding of coherent light–matter interactions for controlling the light flow in the far field.</description><subject>Coherent light</subject><subject>Coupling</subject><subject>Dynamic control</subject><subject>Emitters</subject><subject>Energy transfer</subject><subject>Excitons</subject><subject>Magnetic dipoles</subject><subject>Metasurfaces</subject><subject>Multipoles</subject><subject>Polaritons</subject><subject>Scattering</subject><subject>self‐coupling</subject><subject>van der Waals materials</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMtOwzAQRS0EEqWwZW2JdYofedhLVJWHKGpFu7dsZ4xSQhzsRKg7PoFv5EtIVVSWzObO4twZ6SB0ScmEEsKu69aHCSOME5KJ9AiNqMh5IoSUx4ddkFN0FuNmQIbJR2i27httasCPEF4h4JXVXQehal5w1WCNV1C778-vqe_bGkq89LUOVeebyuIn6HTsg9MWztGJ03WEi98co_XtbD29T-aLu4fpzTyxPCvSxJRZxgyX4LgWwgpDc6MNY1waqiUwCbbUoiiozhkpdOpsYYhzXNg8S0vBx-hqf7YN_r2H2KmN70MzfFRM0kxQSkk6UJM9ZYOPMYBTbajedNgqStTOlNqZUgdTQ0HuCx9VDdt_aDVfLp7_uj_cb25b</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Shen, Fuhuan</creator><creator>Zhou, Yaoqiang</creator><creator>Ma, Jingwen</creator><creator>Zheng, Jiapeng</creator><creator>Wang, Jianfang</creator><creator>Chen, Zefeng</creator><creator>Xu, Jianbin</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0689-8443</orcidid></search><sort><creationdate>202401</creationdate><title>Tunable Kerker Scattering in a Self‐Coupled Polaritonic Metasurface</title><author>Shen, Fuhuan ; Zhou, Yaoqiang ; Ma, Jingwen ; Zheng, Jiapeng ; Wang, Jianfang ; Chen, Zefeng ; Xu, Jianbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-bd552b39ef3a88c8b16bab2239b1a9e29ecda8771a6207a4fc7b0ff38c654d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coherent light</topic><topic>Coupling</topic><topic>Dynamic control</topic><topic>Emitters</topic><topic>Energy transfer</topic><topic>Excitons</topic><topic>Magnetic dipoles</topic><topic>Metasurfaces</topic><topic>Multipoles</topic><topic>Polaritons</topic><topic>Scattering</topic><topic>self‐coupling</topic><topic>van der Waals materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Fuhuan</creatorcontrib><creatorcontrib>Zhou, Yaoqiang</creatorcontrib><creatorcontrib>Ma, Jingwen</creatorcontrib><creatorcontrib>Zheng, Jiapeng</creatorcontrib><creatorcontrib>Wang, Jianfang</creatorcontrib><creatorcontrib>Chen, Zefeng</creatorcontrib><creatorcontrib>Xu, Jianbin</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Laser &amp; photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Fuhuan</au><au>Zhou, Yaoqiang</au><au>Ma, Jingwen</au><au>Zheng, Jiapeng</au><au>Wang, Jianfang</au><au>Chen, Zefeng</au><au>Xu, Jianbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable Kerker Scattering in a Self‐Coupled Polaritonic Metasurface</atitle><jtitle>Laser &amp; photonics reviews</jtitle><date>2024-01</date><risdate>2024</risdate><volume>18</volume><issue>1</issue><epage>n/a</epage><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>The strong coupling between electronic transitions and resonant cavity modes, facilitated by coherent energy transfer, presents unprecedented opportunities for tailoring the photoelectronic properties of constituent components. Here, the concept of Kerker effect is leveraged to demonstrate the dynamic control of scattering directionality in dielectric nanostructures by tuning the exciton‐photon coupling. First, theoretical evidence for a significant modification of the scattering directionality of a dielectric metastructure engineered by excitonic polaritons is provided. As a proof of concept, self‐coupled metasurfaces composed of bulk MoS2, which exhibit a forward/backward scattering ratio up to 20, are constructed. Importantly, tunable directionality is achieved by thermally controlling the excitonic coupling to the Mie modes. The simulated results are in good agreement with the experimental measurements, and the subsequent multipole decompositions effectively elucidate the underlying mechanism, attributed to the interplay between electric and magnetic dipole modes that are modified by excitons. The findings shed light on the control of light flow in the far field through coherent light–matter interactions, thereby opening up numerous possibilities for active optical antennas and quantum emitters on a nanoscale. Tunable directional/Kerker scattering by the dielectric metasurface is achieved through the concept of strong light–matter interaction. The MoS2 self‐coupled metasurfaces are built, showing the forward/backward scattering ratio up to 20 and the thermal tunability of directional scattering. This work significantly advances the knowledge and understanding of coherent light–matter interactions for controlling the light flow in the far field.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/lpor.202300584</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0689-8443</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1863-8880
ispartof Laser & photonics reviews, 2024-01, Vol.18 (1), p.n/a
issn 1863-8880
1863-8899
language eng
recordid cdi_proquest_journals_2915811104
source Wiley
subjects Coherent light
Coupling
Dynamic control
Emitters
Energy transfer
Excitons
Magnetic dipoles
Metasurfaces
Multipoles
Polaritons
Scattering
self‐coupling
van der Waals materials
title Tunable Kerker Scattering in a Self‐Coupled Polaritonic Metasurface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20Kerker%20Scattering%20in%20a%20Self%E2%80%90Coupled%20Polaritonic%20Metasurface&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Shen,%20Fuhuan&rft.date=2024-01&rft.volume=18&rft.issue=1&rft.epage=n/a&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.202300584&rft_dat=%3Cproquest_cross%3E2915811104%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3574-bd552b39ef3a88c8b16bab2239b1a9e29ecda8771a6207a4fc7b0ff38c654d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2915811104&rft_id=info:pmid/&rfr_iscdi=true