Loading…

Improving Alkaline Hydrogen Oxidation through Dynamic Lattice Hydrogen Migration in Pd@Pt Core‐Shell Electrocatalysts

Tracking the trajectory of hydrogen intermediates during hydrogen electro‐catalysis is beneficial for designing synergetic multi‐component catalysts with division of chemical labor. Herein, we demonstrate a novel dynamic lattice hydrogen (LH) migration mechanism that leads to two orders of magnitude...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2024-01, Vol.136 (5), p.n/a
Main Authors: Zhao, Tonghui, Li, Mengting, Xiao, Dongdong, Yang, Xiaoju, An, Lulu, Deng, Zhiping, Shen, Tao, Gong, Mingxing, Chen, Yi, Liu, Hongfang, Feng, Ligang, Yang, Xuan, Li, Li, Wang, Deli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1178-6ebfa133c5dcb1c069d8b1431946bfa5e8ae287aa4b635138c6ccf68a2997c6b3
container_end_page n/a
container_issue 5
container_start_page
container_title Angewandte Chemie
container_volume 136
creator Zhao, Tonghui
Li, Mengting
Xiao, Dongdong
Yang, Xiaoju
An, Lulu
Deng, Zhiping
Shen, Tao
Gong, Mingxing
Chen, Yi
Liu, Hongfang
Feng, Ligang
Yang, Xuan
Li, Li
Wang, Deli
description Tracking the trajectory of hydrogen intermediates during hydrogen electro‐catalysis is beneficial for designing synergetic multi‐component catalysts with division of chemical labor. Herein, we demonstrate a novel dynamic lattice hydrogen (LH) migration mechanism that leads to two orders of magnitude increase in the alkaline hydrogen oxidation reaction (HOR) activity on Pd@Pt over pure Pd, even ≈31.8 times mass activity enhancement than commercial Pt. Specifically, the polarization‐driven electrochemical hydrogenation process from Pd@Pt to PdHx@Pt by incorporating LH allows more surface vacancy Pt sites to increase the surface H coverage. The inverse dehydrogenation process makes PdHx as an H reservoir, providing LH migrates to the surface of Pt and participates in the HOR. Meanwhile, the formation of PdHx induces electronic effect, lowering the energy barrier of rate‐determining Volmer step, thus resulting in the HOR kinetics on Pd@Pt being proportional to the LH concentration in the in situ formed PdHx@Pt. Moreover, this dynamic catalysis mechanism would open up the catalysts scope for hydrogen electro‐catalysis. A dynamic lattice hydrogen (LH) migration mechanism is proposed to understand the two orders of magnitude enhancement of the kinetics for alkaline hydrogen oxidation reaction (HOR) on Pd@Pt core–shell model than pure Pd. Surface Pt atoms promote the H2 dissociation and the adsorbed hydrogen (Had) incorporation into the Pd lattice. Internal PdHx (PdHab) act as a hydrogen reservoir, providing LH to migrate to the surface Pt and combine with OH− to form water.
doi_str_mv 10.1002/ange.202315148
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2916213050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916213050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1178-6ebfa133c5dcb1c069d8b1431946bfa5e8ae287aa4b635138c6ccf68a2997c6b3</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EEqWwMltiTvFP4jgbVSltpUKRgDlyHCd1Se3iuJRsPALPyJOQKgjYmO5wz_mu7gfAOUYDjBC5FKZUA4IIxREO-QHo4YjggMZRfAh6CIVhwEmYHIOTul4hhBiJkx7YzdYbZ1-1KeGwehaVNgpOm9zZUhm4eNO58Noa6JfObsslvG6MWGsJ58J7Lf-gt7p0HaoNvM-v7j0cWac-3z8elqqq4LhS0jsrhRdVU_v6FBwVoqrV2ffsg6eb8eNoGswXk9loOA8kxjEPmMoKgSmVUS4zLBFLcp7hkOIkZO0mUlwowmMhwozRCFMumZQF44IkSSxZRvvgosttv3zZqtqnK7t1pj2ZkgQzgimKUEsNOko6W9dOFenG6bVwTYpRui833Zeb_pTbCkkn7HSlmn_odHg3Gf-6X9ABgOs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916213050</pqid></control><display><type>article</type><title>Improving Alkaline Hydrogen Oxidation through Dynamic Lattice Hydrogen Migration in Pd@Pt Core‐Shell Electrocatalysts</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zhao, Tonghui ; Li, Mengting ; Xiao, Dongdong ; Yang, Xiaoju ; An, Lulu ; Deng, Zhiping ; Shen, Tao ; Gong, Mingxing ; Chen, Yi ; Liu, Hongfang ; Feng, Ligang ; Yang, Xuan ; Li, Li ; Wang, Deli</creator><creatorcontrib>Zhao, Tonghui ; Li, Mengting ; Xiao, Dongdong ; Yang, Xiaoju ; An, Lulu ; Deng, Zhiping ; Shen, Tao ; Gong, Mingxing ; Chen, Yi ; Liu, Hongfang ; Feng, Ligang ; Yang, Xuan ; Li, Li ; Wang, Deli</creatorcontrib><description>Tracking the trajectory of hydrogen intermediates during hydrogen electro‐catalysis is beneficial for designing synergetic multi‐component catalysts with division of chemical labor. Herein, we demonstrate a novel dynamic lattice hydrogen (LH) migration mechanism that leads to two orders of magnitude increase in the alkaline hydrogen oxidation reaction (HOR) activity on Pd@Pt over pure Pd, even ≈31.8 times mass activity enhancement than commercial Pt. Specifically, the polarization‐driven electrochemical hydrogenation process from Pd@Pt to PdHx@Pt by incorporating LH allows more surface vacancy Pt sites to increase the surface H coverage. The inverse dehydrogenation process makes PdHx as an H reservoir, providing LH migrates to the surface of Pt and participates in the HOR. Meanwhile, the formation of PdHx induces electronic effect, lowering the energy barrier of rate‐determining Volmer step, thus resulting in the HOR kinetics on Pd@Pt being proportional to the LH concentration in the in situ formed PdHx@Pt. Moreover, this dynamic catalysis mechanism would open up the catalysts scope for hydrogen electro‐catalysis. A dynamic lattice hydrogen (LH) migration mechanism is proposed to understand the two orders of magnitude enhancement of the kinetics for alkaline hydrogen oxidation reaction (HOR) on Pd@Pt core–shell model than pure Pd. Surface Pt atoms promote the H2 dissociation and the adsorbed hydrogen (Had) incorporation into the Pd lattice. Internal PdHx (PdHab) act as a hydrogen reservoir, providing LH to migrate to the surface Pt and combine with OH− to form water.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202315148</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anion Exchange Membrane Fuel Cells ; Catalysis ; Catalysts ; Chemistry ; Dehydrogenation ; Dynamic Mechanism ; Electrocatalysts ; Electrochemistry ; Hydrogen ; Hydrogen Oxidation Reaction ; Intermediates ; Intermediates Migration ; Oxidation ; Palladium ; Platinum ; Polarization-Driven Lattice Hydrogen</subject><ispartof>Angewandte Chemie, 2024-01, Vol.136 (5), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1178-6ebfa133c5dcb1c069d8b1431946bfa5e8ae287aa4b635138c6ccf68a2997c6b3</cites><orcidid>0000-0003-2023-6478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhao, Tonghui</creatorcontrib><creatorcontrib>Li, Mengting</creatorcontrib><creatorcontrib>Xiao, Dongdong</creatorcontrib><creatorcontrib>Yang, Xiaoju</creatorcontrib><creatorcontrib>An, Lulu</creatorcontrib><creatorcontrib>Deng, Zhiping</creatorcontrib><creatorcontrib>Shen, Tao</creatorcontrib><creatorcontrib>Gong, Mingxing</creatorcontrib><creatorcontrib>Chen, Yi</creatorcontrib><creatorcontrib>Liu, Hongfang</creatorcontrib><creatorcontrib>Feng, Ligang</creatorcontrib><creatorcontrib>Yang, Xuan</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Wang, Deli</creatorcontrib><title>Improving Alkaline Hydrogen Oxidation through Dynamic Lattice Hydrogen Migration in Pd@Pt Core‐Shell Electrocatalysts</title><title>Angewandte Chemie</title><description>Tracking the trajectory of hydrogen intermediates during hydrogen electro‐catalysis is beneficial for designing synergetic multi‐component catalysts with division of chemical labor. Herein, we demonstrate a novel dynamic lattice hydrogen (LH) migration mechanism that leads to two orders of magnitude increase in the alkaline hydrogen oxidation reaction (HOR) activity on Pd@Pt over pure Pd, even ≈31.8 times mass activity enhancement than commercial Pt. Specifically, the polarization‐driven electrochemical hydrogenation process from Pd@Pt to PdHx@Pt by incorporating LH allows more surface vacancy Pt sites to increase the surface H coverage. The inverse dehydrogenation process makes PdHx as an H reservoir, providing LH migrates to the surface of Pt and participates in the HOR. Meanwhile, the formation of PdHx induces electronic effect, lowering the energy barrier of rate‐determining Volmer step, thus resulting in the HOR kinetics on Pd@Pt being proportional to the LH concentration in the in situ formed PdHx@Pt. Moreover, this dynamic catalysis mechanism would open up the catalysts scope for hydrogen electro‐catalysis. A dynamic lattice hydrogen (LH) migration mechanism is proposed to understand the two orders of magnitude enhancement of the kinetics for alkaline hydrogen oxidation reaction (HOR) on Pd@Pt core–shell model than pure Pd. Surface Pt atoms promote the H2 dissociation and the adsorbed hydrogen (Had) incorporation into the Pd lattice. Internal PdHx (PdHab) act as a hydrogen reservoir, providing LH to migrate to the surface Pt and combine with OH− to form water.</description><subject>Anion Exchange Membrane Fuel Cells</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Dehydrogenation</subject><subject>Dynamic Mechanism</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Hydrogen</subject><subject>Hydrogen Oxidation Reaction</subject><subject>Intermediates</subject><subject>Intermediates Migration</subject><subject>Oxidation</subject><subject>Palladium</subject><subject>Platinum</subject><subject>Polarization-Driven Lattice Hydrogen</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EEqWwMltiTvFP4jgbVSltpUKRgDlyHCd1Se3iuJRsPALPyJOQKgjYmO5wz_mu7gfAOUYDjBC5FKZUA4IIxREO-QHo4YjggMZRfAh6CIVhwEmYHIOTul4hhBiJkx7YzdYbZ1-1KeGwehaVNgpOm9zZUhm4eNO58Noa6JfObsslvG6MWGsJ58J7Lf-gt7p0HaoNvM-v7j0cWac-3z8elqqq4LhS0jsrhRdVU_v6FBwVoqrV2ffsg6eb8eNoGswXk9loOA8kxjEPmMoKgSmVUS4zLBFLcp7hkOIkZO0mUlwowmMhwozRCFMumZQF44IkSSxZRvvgosttv3zZqtqnK7t1pj2ZkgQzgimKUEsNOko6W9dOFenG6bVwTYpRui833Zeb_pTbCkkn7HSlmn_odHg3Gf-6X9ABgOs</recordid><startdate>20240125</startdate><enddate>20240125</enddate><creator>Zhao, Tonghui</creator><creator>Li, Mengting</creator><creator>Xiao, Dongdong</creator><creator>Yang, Xiaoju</creator><creator>An, Lulu</creator><creator>Deng, Zhiping</creator><creator>Shen, Tao</creator><creator>Gong, Mingxing</creator><creator>Chen, Yi</creator><creator>Liu, Hongfang</creator><creator>Feng, Ligang</creator><creator>Yang, Xuan</creator><creator>Li, Li</creator><creator>Wang, Deli</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2023-6478</orcidid></search><sort><creationdate>20240125</creationdate><title>Improving Alkaline Hydrogen Oxidation through Dynamic Lattice Hydrogen Migration in Pd@Pt Core‐Shell Electrocatalysts</title><author>Zhao, Tonghui ; Li, Mengting ; Xiao, Dongdong ; Yang, Xiaoju ; An, Lulu ; Deng, Zhiping ; Shen, Tao ; Gong, Mingxing ; Chen, Yi ; Liu, Hongfang ; Feng, Ligang ; Yang, Xuan ; Li, Li ; Wang, Deli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1178-6ebfa133c5dcb1c069d8b1431946bfa5e8ae287aa4b635138c6ccf68a2997c6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anion Exchange Membrane Fuel Cells</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Dehydrogenation</topic><topic>Dynamic Mechanism</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Hydrogen</topic><topic>Hydrogen Oxidation Reaction</topic><topic>Intermediates</topic><topic>Intermediates Migration</topic><topic>Oxidation</topic><topic>Palladium</topic><topic>Platinum</topic><topic>Polarization-Driven Lattice Hydrogen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Tonghui</creatorcontrib><creatorcontrib>Li, Mengting</creatorcontrib><creatorcontrib>Xiao, Dongdong</creatorcontrib><creatorcontrib>Yang, Xiaoju</creatorcontrib><creatorcontrib>An, Lulu</creatorcontrib><creatorcontrib>Deng, Zhiping</creatorcontrib><creatorcontrib>Shen, Tao</creatorcontrib><creatorcontrib>Gong, Mingxing</creatorcontrib><creatorcontrib>Chen, Yi</creatorcontrib><creatorcontrib>Liu, Hongfang</creatorcontrib><creatorcontrib>Feng, Ligang</creatorcontrib><creatorcontrib>Yang, Xuan</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Wang, Deli</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Tonghui</au><au>Li, Mengting</au><au>Xiao, Dongdong</au><au>Yang, Xiaoju</au><au>An, Lulu</au><au>Deng, Zhiping</au><au>Shen, Tao</au><au>Gong, Mingxing</au><au>Chen, Yi</au><au>Liu, Hongfang</au><au>Feng, Ligang</au><au>Yang, Xuan</au><au>Li, Li</au><au>Wang, Deli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Alkaline Hydrogen Oxidation through Dynamic Lattice Hydrogen Migration in Pd@Pt Core‐Shell Electrocatalysts</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-01-25</date><risdate>2024</risdate><volume>136</volume><issue>5</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Tracking the trajectory of hydrogen intermediates during hydrogen electro‐catalysis is beneficial for designing synergetic multi‐component catalysts with division of chemical labor. Herein, we demonstrate a novel dynamic lattice hydrogen (LH) migration mechanism that leads to two orders of magnitude increase in the alkaline hydrogen oxidation reaction (HOR) activity on Pd@Pt over pure Pd, even ≈31.8 times mass activity enhancement than commercial Pt. Specifically, the polarization‐driven electrochemical hydrogenation process from Pd@Pt to PdHx@Pt by incorporating LH allows more surface vacancy Pt sites to increase the surface H coverage. The inverse dehydrogenation process makes PdHx as an H reservoir, providing LH migrates to the surface of Pt and participates in the HOR. Meanwhile, the formation of PdHx induces electronic effect, lowering the energy barrier of rate‐determining Volmer step, thus resulting in the HOR kinetics on Pd@Pt being proportional to the LH concentration in the in situ formed PdHx@Pt. Moreover, this dynamic catalysis mechanism would open up the catalysts scope for hydrogen electro‐catalysis. A dynamic lattice hydrogen (LH) migration mechanism is proposed to understand the two orders of magnitude enhancement of the kinetics for alkaline hydrogen oxidation reaction (HOR) on Pd@Pt core–shell model than pure Pd. Surface Pt atoms promote the H2 dissociation and the adsorbed hydrogen (Had) incorporation into the Pd lattice. Internal PdHx (PdHab) act as a hydrogen reservoir, providing LH to migrate to the surface Pt and combine with OH− to form water.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202315148</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2023-6478</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2024-01, Vol.136 (5), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2916213050
source Wiley-Blackwell Read & Publish Collection
subjects Anion Exchange Membrane Fuel Cells
Catalysis
Catalysts
Chemistry
Dehydrogenation
Dynamic Mechanism
Electrocatalysts
Electrochemistry
Hydrogen
Hydrogen Oxidation Reaction
Intermediates
Intermediates Migration
Oxidation
Palladium
Platinum
Polarization-Driven Lattice Hydrogen
title Improving Alkaline Hydrogen Oxidation through Dynamic Lattice Hydrogen Migration in Pd@Pt Core‐Shell Electrocatalysts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A44%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Alkaline%20Hydrogen%20Oxidation%20through%20Dynamic%20Lattice%20Hydrogen%20Migration%20in%20Pd@Pt%20Core%E2%80%90Shell%20Electrocatalysts&rft.jtitle=Angewandte%20Chemie&rft.au=Zhao,%20Tonghui&rft.date=2024-01-25&rft.volume=136&rft.issue=5&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202315148&rft_dat=%3Cproquest_cross%3E2916213050%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1178-6ebfa133c5dcb1c069d8b1431946bfa5e8ae287aa4b635138c6ccf68a2997c6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2916213050&rft_id=info:pmid/&rfr_iscdi=true