Loading…

Markov chain importance sampling for minibatches

This study investigates importance sampling under the scheme of minibatch stochastic gradient descent, under which the contributions are twofold. First, theoretically, we develop a neat tilting formula, which can be regarded as a general device for asymptotically optimal importance sampling. Second,...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning 2024-02, Vol.113 (2), p.789-814
Main Authors: Fuh, Cheng-Der, Wang, Chuan-Ju, Pai, Chen-Hung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-6038208acc6221a4dd3dca61215dc671cbcf5c9288f762aa9469d062c1f38ef53
cites cdi_FETCH-LOGICAL-c319t-6038208acc6221a4dd3dca61215dc671cbcf5c9288f762aa9469d062c1f38ef53
container_end_page 814
container_issue 2
container_start_page 789
container_title Machine learning
container_volume 113
creator Fuh, Cheng-Der
Wang, Chuan-Ju
Pai, Chen-Hung
description This study investigates importance sampling under the scheme of minibatch stochastic gradient descent, under which the contributions are twofold. First, theoretically, we develop a neat tilting formula, which can be regarded as a general device for asymptotically optimal importance sampling. Second, practically, guided by the formula, we present an effective algorithm for importance sampling which accounts for the effects of minibatches and leverages the Markovian property of the gradients between iterations. Experiments conducted on artificial data confirm that our algorithm consistently delivers superior performance in terms of variance reduction. Furthermore, experiments carried out on real-world data demonstrate that our method, when paired with relatively straightforward models like multilayer perceptron and convolutional neural networks, outperforms in terms of training loss and testing error.
doi_str_mv 10.1007/s10994-023-06489-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2916260952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916260952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6038208acc6221a4dd3dca61215dc671cbcf5c9288f762aa9469d062c1f38ef53</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJ0kyToyx-wYoXPYdsmux23TY16Qr-e7tW8OZpGHjed4aHkEsG1wyguskMtC4pcEEBS6WpPCIzJqtxlSiPyQyUkhQZl6fkLOctAHBUOCPwbNN7_CzcxjZd0bR9TIPtnC-ybftd062LEFPRNl2zsoPb-HxOToLdZX_xO-fk7f7udfFIly8PT4vbJXWC6YEiCMVBWeeQc2bLuha1s-MDTNYOK-ZWLkinuVKhQm6tLlHXgNyxIJQPUszJ1dTbp_ix93kw27hP3XjScM2QI2jJR4pPlEsx5-SD6VPT2vRlGJiDGTOZMaMZ82PGHKrFFMoj3K19-qv-J_UNPBdlag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916260952</pqid></control><display><type>article</type><title>Markov chain importance sampling for minibatches</title><source>Springer Nature</source><creator>Fuh, Cheng-Der ; Wang, Chuan-Ju ; Pai, Chen-Hung</creator><creatorcontrib>Fuh, Cheng-Der ; Wang, Chuan-Ju ; Pai, Chen-Hung</creatorcontrib><description>This study investigates importance sampling under the scheme of minibatch stochastic gradient descent, under which the contributions are twofold. First, theoretically, we develop a neat tilting formula, which can be regarded as a general device for asymptotically optimal importance sampling. Second, practically, guided by the formula, we present an effective algorithm for importance sampling which accounts for the effects of minibatches and leverages the Markovian property of the gradients between iterations. Experiments conducted on artificial data confirm that our algorithm consistently delivers superior performance in terms of variance reduction. Furthermore, experiments carried out on real-world data demonstrate that our method, when paired with relatively straightforward models like multilayer perceptron and convolutional neural networks, outperforms in terms of training loss and testing error.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-023-06489-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural networks ; Computer Science ; Control ; Importance sampling ; Machine Learning ; Markov analysis ; Markov chains ; Mechatronics ; Multilayer perceptrons ; Natural Language Processing (NLP) ; Normal distribution ; Robotics ; Simulation and Modeling</subject><ispartof>Machine learning, 2024-02, Vol.113 (2), p.789-814</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6038208acc6221a4dd3dca61215dc671cbcf5c9288f762aa9469d062c1f38ef53</citedby><cites>FETCH-LOGICAL-c319t-6038208acc6221a4dd3dca61215dc671cbcf5c9288f762aa9469d062c1f38ef53</cites><orcidid>0000-0002-5281-2962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fuh, Cheng-Der</creatorcontrib><creatorcontrib>Wang, Chuan-Ju</creatorcontrib><creatorcontrib>Pai, Chen-Hung</creatorcontrib><title>Markov chain importance sampling for minibatches</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>This study investigates importance sampling under the scheme of minibatch stochastic gradient descent, under which the contributions are twofold. First, theoretically, we develop a neat tilting formula, which can be regarded as a general device for asymptotically optimal importance sampling. Second, practically, guided by the formula, we present an effective algorithm for importance sampling which accounts for the effects of minibatches and leverages the Markovian property of the gradients between iterations. Experiments conducted on artificial data confirm that our algorithm consistently delivers superior performance in terms of variance reduction. Furthermore, experiments carried out on real-world data demonstrate that our method, when paired with relatively straightforward models like multilayer perceptron and convolutional neural networks, outperforms in terms of training loss and testing error.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Control</subject><subject>Importance sampling</subject><subject>Machine Learning</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mechatronics</subject><subject>Multilayer perceptrons</subject><subject>Natural Language Processing (NLP)</subject><subject>Normal distribution</subject><subject>Robotics</subject><subject>Simulation and Modeling</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJ0kyToyx-wYoXPYdsmux23TY16Qr-e7tW8OZpGHjed4aHkEsG1wyguskMtC4pcEEBS6WpPCIzJqtxlSiPyQyUkhQZl6fkLOctAHBUOCPwbNN7_CzcxjZd0bR9TIPtnC-ybftd062LEFPRNl2zsoPb-HxOToLdZX_xO-fk7f7udfFIly8PT4vbJXWC6YEiCMVBWeeQc2bLuha1s-MDTNYOK-ZWLkinuVKhQm6tLlHXgNyxIJQPUszJ1dTbp_ix93kw27hP3XjScM2QI2jJR4pPlEsx5-SD6VPT2vRlGJiDGTOZMaMZ82PGHKrFFMoj3K19-qv-J_UNPBdlag</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Fuh, Cheng-Der</creator><creator>Wang, Chuan-Ju</creator><creator>Pai, Chen-Hung</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5281-2962</orcidid></search><sort><creationdate>20240201</creationdate><title>Markov chain importance sampling for minibatches</title><author>Fuh, Cheng-Der ; Wang, Chuan-Ju ; Pai, Chen-Hung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6038208acc6221a4dd3dca61215dc671cbcf5c9288f762aa9469d062c1f38ef53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Control</topic><topic>Importance sampling</topic><topic>Machine Learning</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mechatronics</topic><topic>Multilayer perceptrons</topic><topic>Natural Language Processing (NLP)</topic><topic>Normal distribution</topic><topic>Robotics</topic><topic>Simulation and Modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuh, Cheng-Der</creatorcontrib><creatorcontrib>Wang, Chuan-Ju</creatorcontrib><creatorcontrib>Pai, Chen-Hung</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuh, Cheng-Der</au><au>Wang, Chuan-Ju</au><au>Pai, Chen-Hung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Markov chain importance sampling for minibatches</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>113</volume><issue>2</issue><spage>789</spage><epage>814</epage><pages>789-814</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>This study investigates importance sampling under the scheme of minibatch stochastic gradient descent, under which the contributions are twofold. First, theoretically, we develop a neat tilting formula, which can be regarded as a general device for asymptotically optimal importance sampling. Second, practically, guided by the formula, we present an effective algorithm for importance sampling which accounts for the effects of minibatches and leverages the Markovian property of the gradients between iterations. Experiments conducted on artificial data confirm that our algorithm consistently delivers superior performance in terms of variance reduction. Furthermore, experiments carried out on real-world data demonstrate that our method, when paired with relatively straightforward models like multilayer perceptron and convolutional neural networks, outperforms in terms of training loss and testing error.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10994-023-06489-5</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-5281-2962</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-6125
ispartof Machine learning, 2024-02, Vol.113 (2), p.789-814
issn 0885-6125
1573-0565
language eng
recordid cdi_proquest_journals_2916260952
source Springer Nature
subjects Algorithms
Artificial Intelligence
Artificial neural networks
Computer Science
Control
Importance sampling
Machine Learning
Markov analysis
Markov chains
Mechatronics
Multilayer perceptrons
Natural Language Processing (NLP)
Normal distribution
Robotics
Simulation and Modeling
title Markov chain importance sampling for minibatches
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Markov%20chain%20importance%20sampling%20for%20minibatches&rft.jtitle=Machine%20learning&rft.au=Fuh,%20Cheng-Der&rft.date=2024-02-01&rft.volume=113&rft.issue=2&rft.spage=789&rft.epage=814&rft.pages=789-814&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-023-06489-5&rft_dat=%3Cproquest_cross%3E2916260952%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-6038208acc6221a4dd3dca61215dc671cbcf5c9288f762aa9469d062c1f38ef53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2916260952&rft_id=info:pmid/&rfr_iscdi=true