Loading…
Markov chain importance sampling for minibatches
This study investigates importance sampling under the scheme of minibatch stochastic gradient descent, under which the contributions are twofold. First, theoretically, we develop a neat tilting formula, which can be regarded as a general device for asymptotically optimal importance sampling. Second,...
Saved in:
Published in: | Machine learning 2024-02, Vol.113 (2), p.789-814 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-6038208acc6221a4dd3dca61215dc671cbcf5c9288f762aa9469d062c1f38ef53 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-6038208acc6221a4dd3dca61215dc671cbcf5c9288f762aa9469d062c1f38ef53 |
container_end_page | 814 |
container_issue | 2 |
container_start_page | 789 |
container_title | Machine learning |
container_volume | 113 |
creator | Fuh, Cheng-Der Wang, Chuan-Ju Pai, Chen-Hung |
description | This study investigates importance sampling under the scheme of minibatch stochastic gradient descent, under which the contributions are twofold. First, theoretically, we develop a neat tilting formula, which can be regarded as a general device for asymptotically optimal importance sampling. Second, practically, guided by the formula, we present an effective algorithm for importance sampling which accounts for the effects of minibatches and leverages the Markovian property of the gradients between iterations. Experiments conducted on artificial data confirm that our algorithm consistently delivers superior performance in terms of variance reduction. Furthermore, experiments carried out on real-world data demonstrate that our method, when paired with relatively straightforward models like multilayer perceptron and convolutional neural networks, outperforms in terms of training loss and testing error. |
doi_str_mv | 10.1007/s10994-023-06489-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2916260952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916260952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6038208acc6221a4dd3dca61215dc671cbcf5c9288f762aa9469d062c1f38ef53</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJ0kyToyx-wYoXPYdsmux23TY16Qr-e7tW8OZpGHjed4aHkEsG1wyguskMtC4pcEEBS6WpPCIzJqtxlSiPyQyUkhQZl6fkLOctAHBUOCPwbNN7_CzcxjZd0bR9TIPtnC-ybftd062LEFPRNl2zsoPb-HxOToLdZX_xO-fk7f7udfFIly8PT4vbJXWC6YEiCMVBWeeQc2bLuha1s-MDTNYOK-ZWLkinuVKhQm6tLlHXgNyxIJQPUszJ1dTbp_ix93kw27hP3XjScM2QI2jJR4pPlEsx5-SD6VPT2vRlGJiDGTOZMaMZ82PGHKrFFMoj3K19-qv-J_UNPBdlag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916260952</pqid></control><display><type>article</type><title>Markov chain importance sampling for minibatches</title><source>Springer Nature</source><creator>Fuh, Cheng-Der ; Wang, Chuan-Ju ; Pai, Chen-Hung</creator><creatorcontrib>Fuh, Cheng-Der ; Wang, Chuan-Ju ; Pai, Chen-Hung</creatorcontrib><description>This study investigates importance sampling under the scheme of minibatch stochastic gradient descent, under which the contributions are twofold. First, theoretically, we develop a neat tilting formula, which can be regarded as a general device for asymptotically optimal importance sampling. Second, practically, guided by the formula, we present an effective algorithm for importance sampling which accounts for the effects of minibatches and leverages the Markovian property of the gradients between iterations. Experiments conducted on artificial data confirm that our algorithm consistently delivers superior performance in terms of variance reduction. Furthermore, experiments carried out on real-world data demonstrate that our method, when paired with relatively straightforward models like multilayer perceptron and convolutional neural networks, outperforms in terms of training loss and testing error.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-023-06489-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural networks ; Computer Science ; Control ; Importance sampling ; Machine Learning ; Markov analysis ; Markov chains ; Mechatronics ; Multilayer perceptrons ; Natural Language Processing (NLP) ; Normal distribution ; Robotics ; Simulation and Modeling</subject><ispartof>Machine learning, 2024-02, Vol.113 (2), p.789-814</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6038208acc6221a4dd3dca61215dc671cbcf5c9288f762aa9469d062c1f38ef53</citedby><cites>FETCH-LOGICAL-c319t-6038208acc6221a4dd3dca61215dc671cbcf5c9288f762aa9469d062c1f38ef53</cites><orcidid>0000-0002-5281-2962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fuh, Cheng-Der</creatorcontrib><creatorcontrib>Wang, Chuan-Ju</creatorcontrib><creatorcontrib>Pai, Chen-Hung</creatorcontrib><title>Markov chain importance sampling for minibatches</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>This study investigates importance sampling under the scheme of minibatch stochastic gradient descent, under which the contributions are twofold. First, theoretically, we develop a neat tilting formula, which can be regarded as a general device for asymptotically optimal importance sampling. Second, practically, guided by the formula, we present an effective algorithm for importance sampling which accounts for the effects of minibatches and leverages the Markovian property of the gradients between iterations. Experiments conducted on artificial data confirm that our algorithm consistently delivers superior performance in terms of variance reduction. Furthermore, experiments carried out on real-world data demonstrate that our method, when paired with relatively straightforward models like multilayer perceptron and convolutional neural networks, outperforms in terms of training loss and testing error.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Control</subject><subject>Importance sampling</subject><subject>Machine Learning</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mechatronics</subject><subject>Multilayer perceptrons</subject><subject>Natural Language Processing (NLP)</subject><subject>Normal distribution</subject><subject>Robotics</subject><subject>Simulation and Modeling</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJ0kyToyx-wYoXPYdsmux23TY16Qr-e7tW8OZpGHjed4aHkEsG1wyguskMtC4pcEEBS6WpPCIzJqtxlSiPyQyUkhQZl6fkLOctAHBUOCPwbNN7_CzcxjZd0bR9TIPtnC-ybftd062LEFPRNl2zsoPb-HxOToLdZX_xO-fk7f7udfFIly8PT4vbJXWC6YEiCMVBWeeQc2bLuha1s-MDTNYOK-ZWLkinuVKhQm6tLlHXgNyxIJQPUszJ1dTbp_ix93kw27hP3XjScM2QI2jJR4pPlEsx5-SD6VPT2vRlGJiDGTOZMaMZ82PGHKrFFMoj3K19-qv-J_UNPBdlag</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Fuh, Cheng-Der</creator><creator>Wang, Chuan-Ju</creator><creator>Pai, Chen-Hung</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5281-2962</orcidid></search><sort><creationdate>20240201</creationdate><title>Markov chain importance sampling for minibatches</title><author>Fuh, Cheng-Der ; Wang, Chuan-Ju ; Pai, Chen-Hung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6038208acc6221a4dd3dca61215dc671cbcf5c9288f762aa9469d062c1f38ef53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Control</topic><topic>Importance sampling</topic><topic>Machine Learning</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mechatronics</topic><topic>Multilayer perceptrons</topic><topic>Natural Language Processing (NLP)</topic><topic>Normal distribution</topic><topic>Robotics</topic><topic>Simulation and Modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuh, Cheng-Der</creatorcontrib><creatorcontrib>Wang, Chuan-Ju</creatorcontrib><creatorcontrib>Pai, Chen-Hung</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuh, Cheng-Der</au><au>Wang, Chuan-Ju</au><au>Pai, Chen-Hung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Markov chain importance sampling for minibatches</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>113</volume><issue>2</issue><spage>789</spage><epage>814</epage><pages>789-814</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>This study investigates importance sampling under the scheme of minibatch stochastic gradient descent, under which the contributions are twofold. First, theoretically, we develop a neat tilting formula, which can be regarded as a general device for asymptotically optimal importance sampling. Second, practically, guided by the formula, we present an effective algorithm for importance sampling which accounts for the effects of minibatches and leverages the Markovian property of the gradients between iterations. Experiments conducted on artificial data confirm that our algorithm consistently delivers superior performance in terms of variance reduction. Furthermore, experiments carried out on real-world data demonstrate that our method, when paired with relatively straightforward models like multilayer perceptron and convolutional neural networks, outperforms in terms of training loss and testing error.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10994-023-06489-5</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-5281-2962</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-6125 |
ispartof | Machine learning, 2024-02, Vol.113 (2), p.789-814 |
issn | 0885-6125 1573-0565 |
language | eng |
recordid | cdi_proquest_journals_2916260952 |
source | Springer Nature |
subjects | Algorithms Artificial Intelligence Artificial neural networks Computer Science Control Importance sampling Machine Learning Markov analysis Markov chains Mechatronics Multilayer perceptrons Natural Language Processing (NLP) Normal distribution Robotics Simulation and Modeling |
title | Markov chain importance sampling for minibatches |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Markov%20chain%20importance%20sampling%20for%20minibatches&rft.jtitle=Machine%20learning&rft.au=Fuh,%20Cheng-Der&rft.date=2024-02-01&rft.volume=113&rft.issue=2&rft.spage=789&rft.epage=814&rft.pages=789-814&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-023-06489-5&rft_dat=%3Cproquest_cross%3E2916260952%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-6038208acc6221a4dd3dca61215dc671cbcf5c9288f762aa9469d062c1f38ef53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2916260952&rft_id=info:pmid/&rfr_iscdi=true |