Loading…

Insight into catalytic cracking pathways of n‐pentane over bifunctional catalysts to produce light olefins

Revealing the reaction mechanism to guide the industrial production of targeted products still remains a grand challenge for catalytic cracking of light alkanes to olefins over metal‐acid bifunctional catalyst. Herein, we systematically investigated the reaction mechanism of n‐pentane cracking on th...

Full description

Saved in:
Bibliographic Details
Published in:AIChE journal 2024-02, Vol.70 (2), p.n/a
Main Authors: Zhang, Xinyang, Li, Yue, Lu, Jiarong, Hu, Yuhang, Chen, Junfeng, Ren, Delun, Li, Ze, Zhang, Qingchao, Yan, Hao, Chen, Xiaobo, Liu, Yibin, Yang, Chaohe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2576-aee0b383cd8635786adc274c8e3544ec1e1cc7b7f13dedfb7ea23cd8bec4c36e3
container_end_page n/a
container_issue 2
container_start_page
container_title AIChE journal
container_volume 70
creator Zhang, Xinyang
Li, Yue
Lu, Jiarong
Hu, Yuhang
Chen, Junfeng
Ren, Delun
Li, Ze
Zhang, Qingchao
Yan, Hao
Chen, Xiaobo
Liu, Yibin
Yang, Chaohe
description Revealing the reaction mechanism to guide the industrial production of targeted products still remains a grand challenge for catalytic cracking of light alkanes to olefins over metal‐acid bifunctional catalyst. Herein, we systematically investigated the reaction mechanism of n‐pentane cracking on the Ag/ZSM‐5 bifunctional catalyst featuring both dehydrogenation and cracking capabilities. Specifically, overall cracking network of n‐pentane was comprehensively constructed to show the roles of metal dehydrogenation sites and acid sites respectively, in which metal Ag could substitute the H of the Brønsted acid site to form the Al–O–Ag linkage with enhanced adsorption and activation of n‐pentane, while Brønsted acid site with weak acid strength relay to promote cracking reaction. Thanks to this synergy of the two active sites, the apparent activation energy of n‐pentane cracking to light olefins was decreased from 82.77 KJ/mol to 68.26 KJ/mol and the proportion of specific path (C5H12 → H2 + C5H10) in n‐pentane monomolecular cracking reaction increased from 14.62% to 69.24%. In addition, 0.57Ag/ZSM‐5 catalyst exhibited the conversion of n‐pentane up to 67.55 wt%, which improved the performance of the parent ZSM‐5 by 13.42 wt%. These analysis results of reaction mechanism may provide some insights for the rational design of catalysts and the full utilization of petrochemical resources.
doi_str_mv 10.1002/aic.18266
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2916293244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916293244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2576-aee0b383cd8635786adc274c8e3544ec1e1cc7b7f13dedfb7ea23cd8bec4c36e3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw4A0sceKQ1j9JnB6rip9KlbjAOXI2m9YlOCF2qXLjEXhGngS36ZXTalbfjEZDyC1nE86YmGoDE56JND0jI57EKkpmLDknI8YYj8KDX5Ir57ZBCZWJEamX1pn1xlNjfUNBe1333gCFTsO7sWvaar_Z697RpqL29_unReu1Rdp8YUcLU-0seNNYXZ_MzjsaktquKXeAtD6GNzVWxrprclHp2uHN6Y7J2-PD6-I5Wr08LRfzVQQiUWmkEVkhMwlllspEZakuQagYMpRJHCNw5ACqUBWXJZZVoVCLA1wgxCBTlGNyN-SGFp87dD7fNrsudHS5mPFUzKSI40DdDxR0jXMdVnnbmQ_d9Tln-WHMPIyZH8cM7HRg96bG_n8wny8Xg-MP0OB53A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916293244</pqid></control><display><type>article</type><title>Insight into catalytic cracking pathways of n‐pentane over bifunctional catalysts to produce light olefins</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zhang, Xinyang ; Li, Yue ; Lu, Jiarong ; Hu, Yuhang ; Chen, Junfeng ; Ren, Delun ; Li, Ze ; Zhang, Qingchao ; Yan, Hao ; Chen, Xiaobo ; Liu, Yibin ; Yang, Chaohe</creator><creatorcontrib>Zhang, Xinyang ; Li, Yue ; Lu, Jiarong ; Hu, Yuhang ; Chen, Junfeng ; Ren, Delun ; Li, Ze ; Zhang, Qingchao ; Yan, Hao ; Chen, Xiaobo ; Liu, Yibin ; Yang, Chaohe</creatorcontrib><description>Revealing the reaction mechanism to guide the industrial production of targeted products still remains a grand challenge for catalytic cracking of light alkanes to olefins over metal‐acid bifunctional catalyst. Herein, we systematically investigated the reaction mechanism of n‐pentane cracking on the Ag/ZSM‐5 bifunctional catalyst featuring both dehydrogenation and cracking capabilities. Specifically, overall cracking network of n‐pentane was comprehensively constructed to show the roles of metal dehydrogenation sites and acid sites respectively, in which metal Ag could substitute the H of the Brønsted acid site to form the Al–O–Ag linkage with enhanced adsorption and activation of n‐pentane, while Brønsted acid site with weak acid strength relay to promote cracking reaction. Thanks to this synergy of the two active sites, the apparent activation energy of n‐pentane cracking to light olefins was decreased from 82.77 KJ/mol to 68.26 KJ/mol and the proportion of specific path (C5H12 → H2 + C5H10) in n‐pentane monomolecular cracking reaction increased from 14.62% to 69.24%. In addition, 0.57Ag/ZSM‐5 catalyst exhibited the conversion of n‐pentane up to 67.55 wt%, which improved the performance of the parent ZSM‐5 by 13.42 wt%. These analysis results of reaction mechanism may provide some insights for the rational design of catalysts and the full utilization of petrochemical resources.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.18266</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Acids ; alkane cracking ; Alkanes ; Alkenes ; bifunctional catalyst ; Catalysts ; Catalytic cracking ; Dehydrogenation ; Industrial production ; light olefins ; Pentane ; Petrochemicals ; Reaction mechanisms ; reaction pathways</subject><ispartof>AIChE journal, 2024-02, Vol.70 (2), p.n/a</ispartof><rights>2023 American Institute of Chemical Engineers.</rights><rights>2024 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2576-aee0b383cd8635786adc274c8e3544ec1e1cc7b7f13dedfb7ea23cd8bec4c36e3</cites><orcidid>0000-0001-9180-0190 ; 0000-0003-1531-3053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Xinyang</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Lu, Jiarong</creatorcontrib><creatorcontrib>Hu, Yuhang</creatorcontrib><creatorcontrib>Chen, Junfeng</creatorcontrib><creatorcontrib>Ren, Delun</creatorcontrib><creatorcontrib>Li, Ze</creatorcontrib><creatorcontrib>Zhang, Qingchao</creatorcontrib><creatorcontrib>Yan, Hao</creatorcontrib><creatorcontrib>Chen, Xiaobo</creatorcontrib><creatorcontrib>Liu, Yibin</creatorcontrib><creatorcontrib>Yang, Chaohe</creatorcontrib><title>Insight into catalytic cracking pathways of n‐pentane over bifunctional catalysts to produce light olefins</title><title>AIChE journal</title><description>Revealing the reaction mechanism to guide the industrial production of targeted products still remains a grand challenge for catalytic cracking of light alkanes to olefins over metal‐acid bifunctional catalyst. Herein, we systematically investigated the reaction mechanism of n‐pentane cracking on the Ag/ZSM‐5 bifunctional catalyst featuring both dehydrogenation and cracking capabilities. Specifically, overall cracking network of n‐pentane was comprehensively constructed to show the roles of metal dehydrogenation sites and acid sites respectively, in which metal Ag could substitute the H of the Brønsted acid site to form the Al–O–Ag linkage with enhanced adsorption and activation of n‐pentane, while Brønsted acid site with weak acid strength relay to promote cracking reaction. Thanks to this synergy of the two active sites, the apparent activation energy of n‐pentane cracking to light olefins was decreased from 82.77 KJ/mol to 68.26 KJ/mol and the proportion of specific path (C5H12 → H2 + C5H10) in n‐pentane monomolecular cracking reaction increased from 14.62% to 69.24%. In addition, 0.57Ag/ZSM‐5 catalyst exhibited the conversion of n‐pentane up to 67.55 wt%, which improved the performance of the parent ZSM‐5 by 13.42 wt%. These analysis results of reaction mechanism may provide some insights for the rational design of catalysts and the full utilization of petrochemical resources.</description><subject>Acids</subject><subject>alkane cracking</subject><subject>Alkanes</subject><subject>Alkenes</subject><subject>bifunctional catalyst</subject><subject>Catalysts</subject><subject>Catalytic cracking</subject><subject>Dehydrogenation</subject><subject>Industrial production</subject><subject>light olefins</subject><subject>Pentane</subject><subject>Petrochemicals</subject><subject>Reaction mechanisms</subject><subject>reaction pathways</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqVw4A0sceKQ1j9JnB6rip9KlbjAOXI2m9YlOCF2qXLjEXhGngS36ZXTalbfjEZDyC1nE86YmGoDE56JND0jI57EKkpmLDknI8YYj8KDX5Ir57ZBCZWJEamX1pn1xlNjfUNBe1333gCFTsO7sWvaar_Z697RpqL29_unReu1Rdp8YUcLU-0seNNYXZ_MzjsaktquKXeAtD6GNzVWxrprclHp2uHN6Y7J2-PD6-I5Wr08LRfzVQQiUWmkEVkhMwlllspEZakuQagYMpRJHCNw5ACqUBWXJZZVoVCLA1wgxCBTlGNyN-SGFp87dD7fNrsudHS5mPFUzKSI40DdDxR0jXMdVnnbmQ_d9Tln-WHMPIyZH8cM7HRg96bG_n8wny8Xg-MP0OB53A</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Zhang, Xinyang</creator><creator>Li, Yue</creator><creator>Lu, Jiarong</creator><creator>Hu, Yuhang</creator><creator>Chen, Junfeng</creator><creator>Ren, Delun</creator><creator>Li, Ze</creator><creator>Zhang, Qingchao</creator><creator>Yan, Hao</creator><creator>Chen, Xiaobo</creator><creator>Liu, Yibin</creator><creator>Yang, Chaohe</creator><general>John Wiley &amp; Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9180-0190</orcidid><orcidid>https://orcid.org/0000-0003-1531-3053</orcidid></search><sort><creationdate>202402</creationdate><title>Insight into catalytic cracking pathways of n‐pentane over bifunctional catalysts to produce light olefins</title><author>Zhang, Xinyang ; Li, Yue ; Lu, Jiarong ; Hu, Yuhang ; Chen, Junfeng ; Ren, Delun ; Li, Ze ; Zhang, Qingchao ; Yan, Hao ; Chen, Xiaobo ; Liu, Yibin ; Yang, Chaohe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2576-aee0b383cd8635786adc274c8e3544ec1e1cc7b7f13dedfb7ea23cd8bec4c36e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acids</topic><topic>alkane cracking</topic><topic>Alkanes</topic><topic>Alkenes</topic><topic>bifunctional catalyst</topic><topic>Catalysts</topic><topic>Catalytic cracking</topic><topic>Dehydrogenation</topic><topic>Industrial production</topic><topic>light olefins</topic><topic>Pentane</topic><topic>Petrochemicals</topic><topic>Reaction mechanisms</topic><topic>reaction pathways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xinyang</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Lu, Jiarong</creatorcontrib><creatorcontrib>Hu, Yuhang</creatorcontrib><creatorcontrib>Chen, Junfeng</creatorcontrib><creatorcontrib>Ren, Delun</creatorcontrib><creatorcontrib>Li, Ze</creatorcontrib><creatorcontrib>Zhang, Qingchao</creatorcontrib><creatorcontrib>Yan, Hao</creatorcontrib><creatorcontrib>Chen, Xiaobo</creatorcontrib><creatorcontrib>Liu, Yibin</creatorcontrib><creatorcontrib>Yang, Chaohe</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xinyang</au><au>Li, Yue</au><au>Lu, Jiarong</au><au>Hu, Yuhang</au><au>Chen, Junfeng</au><au>Ren, Delun</au><au>Li, Ze</au><au>Zhang, Qingchao</au><au>Yan, Hao</au><au>Chen, Xiaobo</au><au>Liu, Yibin</au><au>Yang, Chaohe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insight into catalytic cracking pathways of n‐pentane over bifunctional catalysts to produce light olefins</atitle><jtitle>AIChE journal</jtitle><date>2024-02</date><risdate>2024</risdate><volume>70</volume><issue>2</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Revealing the reaction mechanism to guide the industrial production of targeted products still remains a grand challenge for catalytic cracking of light alkanes to olefins over metal‐acid bifunctional catalyst. Herein, we systematically investigated the reaction mechanism of n‐pentane cracking on the Ag/ZSM‐5 bifunctional catalyst featuring both dehydrogenation and cracking capabilities. Specifically, overall cracking network of n‐pentane was comprehensively constructed to show the roles of metal dehydrogenation sites and acid sites respectively, in which metal Ag could substitute the H of the Brønsted acid site to form the Al–O–Ag linkage with enhanced adsorption and activation of n‐pentane, while Brønsted acid site with weak acid strength relay to promote cracking reaction. Thanks to this synergy of the two active sites, the apparent activation energy of n‐pentane cracking to light olefins was decreased from 82.77 KJ/mol to 68.26 KJ/mol and the proportion of specific path (C5H12 → H2 + C5H10) in n‐pentane monomolecular cracking reaction increased from 14.62% to 69.24%. In addition, 0.57Ag/ZSM‐5 catalyst exhibited the conversion of n‐pentane up to 67.55 wt%, which improved the performance of the parent ZSM‐5 by 13.42 wt%. These analysis results of reaction mechanism may provide some insights for the rational design of catalysts and the full utilization of petrochemical resources.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/aic.18266</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9180-0190</orcidid><orcidid>https://orcid.org/0000-0003-1531-3053</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2024-02, Vol.70 (2), p.n/a
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_2916293244
source Wiley-Blackwell Read & Publish Collection
subjects Acids
alkane cracking
Alkanes
Alkenes
bifunctional catalyst
Catalysts
Catalytic cracking
Dehydrogenation
Industrial production
light olefins
Pentane
Petrochemicals
Reaction mechanisms
reaction pathways
title Insight into catalytic cracking pathways of n‐pentane over bifunctional catalysts to produce light olefins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insight%20into%20catalytic%20cracking%20pathways%20of%20n%E2%80%90pentane%20over%20bifunctional%20catalysts%20to%20produce%20light%20olefins&rft.jtitle=AIChE%20journal&rft.au=Zhang,%20Xinyang&rft.date=2024-02&rft.volume=70&rft.issue=2&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.18266&rft_dat=%3Cproquest_cross%3E2916293244%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2576-aee0b383cd8635786adc274c8e3544ec1e1cc7b7f13dedfb7ea23cd8bec4c36e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2916293244&rft_id=info:pmid/&rfr_iscdi=true