Loading…
Insight into catalytic cracking pathways of n‐pentane over bifunctional catalysts to produce light olefins
Revealing the reaction mechanism to guide the industrial production of targeted products still remains a grand challenge for catalytic cracking of light alkanes to olefins over metal‐acid bifunctional catalyst. Herein, we systematically investigated the reaction mechanism of n‐pentane cracking on th...
Saved in:
Published in: | AIChE journal 2024-02, Vol.70 (2), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2576-aee0b383cd8635786adc274c8e3544ec1e1cc7b7f13dedfb7ea23cd8bec4c36e3 |
container_end_page | n/a |
container_issue | 2 |
container_start_page | |
container_title | AIChE journal |
container_volume | 70 |
creator | Zhang, Xinyang Li, Yue Lu, Jiarong Hu, Yuhang Chen, Junfeng Ren, Delun Li, Ze Zhang, Qingchao Yan, Hao Chen, Xiaobo Liu, Yibin Yang, Chaohe |
description | Revealing the reaction mechanism to guide the industrial production of targeted products still remains a grand challenge for catalytic cracking of light alkanes to olefins over metal‐acid bifunctional catalyst. Herein, we systematically investigated the reaction mechanism of n‐pentane cracking on the Ag/ZSM‐5 bifunctional catalyst featuring both dehydrogenation and cracking capabilities. Specifically, overall cracking network of n‐pentane was comprehensively constructed to show the roles of metal dehydrogenation sites and acid sites respectively, in which metal Ag could substitute the H of the Brønsted acid site to form the Al–O–Ag linkage with enhanced adsorption and activation of n‐pentane, while Brønsted acid site with weak acid strength relay to promote cracking reaction. Thanks to this synergy of the two active sites, the apparent activation energy of n‐pentane cracking to light olefins was decreased from 82.77 KJ/mol to 68.26 KJ/mol and the proportion of specific path (C5H12 → H2 + C5H10) in n‐pentane monomolecular cracking reaction increased from 14.62% to 69.24%. In addition, 0.57Ag/ZSM‐5 catalyst exhibited the conversion of n‐pentane up to 67.55 wt%, which improved the performance of the parent ZSM‐5 by 13.42 wt%. These analysis results of reaction mechanism may provide some insights for the rational design of catalysts and the full utilization of petrochemical resources. |
doi_str_mv | 10.1002/aic.18266 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2916293244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916293244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2576-aee0b383cd8635786adc274c8e3544ec1e1cc7b7f13dedfb7ea23cd8bec4c36e3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw4A0sceKQ1j9JnB6rip9KlbjAOXI2m9YlOCF2qXLjEXhGngS36ZXTalbfjEZDyC1nE86YmGoDE56JND0jI57EKkpmLDknI8YYj8KDX5Ir57ZBCZWJEamX1pn1xlNjfUNBe1333gCFTsO7sWvaar_Z697RpqL29_unReu1Rdp8YUcLU-0seNNYXZ_MzjsaktquKXeAtD6GNzVWxrprclHp2uHN6Y7J2-PD6-I5Wr08LRfzVQQiUWmkEVkhMwlllspEZakuQagYMpRJHCNw5ACqUBWXJZZVoVCLA1wgxCBTlGNyN-SGFp87dD7fNrsudHS5mPFUzKSI40DdDxR0jXMdVnnbmQ_d9Tln-WHMPIyZH8cM7HRg96bG_n8wny8Xg-MP0OB53A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916293244</pqid></control><display><type>article</type><title>Insight into catalytic cracking pathways of n‐pentane over bifunctional catalysts to produce light olefins</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Zhang, Xinyang ; Li, Yue ; Lu, Jiarong ; Hu, Yuhang ; Chen, Junfeng ; Ren, Delun ; Li, Ze ; Zhang, Qingchao ; Yan, Hao ; Chen, Xiaobo ; Liu, Yibin ; Yang, Chaohe</creator><creatorcontrib>Zhang, Xinyang ; Li, Yue ; Lu, Jiarong ; Hu, Yuhang ; Chen, Junfeng ; Ren, Delun ; Li, Ze ; Zhang, Qingchao ; Yan, Hao ; Chen, Xiaobo ; Liu, Yibin ; Yang, Chaohe</creatorcontrib><description>Revealing the reaction mechanism to guide the industrial production of targeted products still remains a grand challenge for catalytic cracking of light alkanes to olefins over metal‐acid bifunctional catalyst. Herein, we systematically investigated the reaction mechanism of n‐pentane cracking on the Ag/ZSM‐5 bifunctional catalyst featuring both dehydrogenation and cracking capabilities. Specifically, overall cracking network of n‐pentane was comprehensively constructed to show the roles of metal dehydrogenation sites and acid sites respectively, in which metal Ag could substitute the H of the Brønsted acid site to form the Al–O–Ag linkage with enhanced adsorption and activation of n‐pentane, while Brønsted acid site with weak acid strength relay to promote cracking reaction. Thanks to this synergy of the two active sites, the apparent activation energy of n‐pentane cracking to light olefins was decreased from 82.77 KJ/mol to 68.26 KJ/mol and the proportion of specific path (C5H12 → H2 + C5H10) in n‐pentane monomolecular cracking reaction increased from 14.62% to 69.24%. In addition, 0.57Ag/ZSM‐5 catalyst exhibited the conversion of n‐pentane up to 67.55 wt%, which improved the performance of the parent ZSM‐5 by 13.42 wt%. These analysis results of reaction mechanism may provide some insights for the rational design of catalysts and the full utilization of petrochemical resources.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.18266</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Acids ; alkane cracking ; Alkanes ; Alkenes ; bifunctional catalyst ; Catalysts ; Catalytic cracking ; Dehydrogenation ; Industrial production ; light olefins ; Pentane ; Petrochemicals ; Reaction mechanisms ; reaction pathways</subject><ispartof>AIChE journal, 2024-02, Vol.70 (2), p.n/a</ispartof><rights>2023 American Institute of Chemical Engineers.</rights><rights>2024 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2576-aee0b383cd8635786adc274c8e3544ec1e1cc7b7f13dedfb7ea23cd8bec4c36e3</cites><orcidid>0000-0001-9180-0190 ; 0000-0003-1531-3053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Xinyang</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Lu, Jiarong</creatorcontrib><creatorcontrib>Hu, Yuhang</creatorcontrib><creatorcontrib>Chen, Junfeng</creatorcontrib><creatorcontrib>Ren, Delun</creatorcontrib><creatorcontrib>Li, Ze</creatorcontrib><creatorcontrib>Zhang, Qingchao</creatorcontrib><creatorcontrib>Yan, Hao</creatorcontrib><creatorcontrib>Chen, Xiaobo</creatorcontrib><creatorcontrib>Liu, Yibin</creatorcontrib><creatorcontrib>Yang, Chaohe</creatorcontrib><title>Insight into catalytic cracking pathways of n‐pentane over bifunctional catalysts to produce light olefins</title><title>AIChE journal</title><description>Revealing the reaction mechanism to guide the industrial production of targeted products still remains a grand challenge for catalytic cracking of light alkanes to olefins over metal‐acid bifunctional catalyst. Herein, we systematically investigated the reaction mechanism of n‐pentane cracking on the Ag/ZSM‐5 bifunctional catalyst featuring both dehydrogenation and cracking capabilities. Specifically, overall cracking network of n‐pentane was comprehensively constructed to show the roles of metal dehydrogenation sites and acid sites respectively, in which metal Ag could substitute the H of the Brønsted acid site to form the Al–O–Ag linkage with enhanced adsorption and activation of n‐pentane, while Brønsted acid site with weak acid strength relay to promote cracking reaction. Thanks to this synergy of the two active sites, the apparent activation energy of n‐pentane cracking to light olefins was decreased from 82.77 KJ/mol to 68.26 KJ/mol and the proportion of specific path (C5H12 → H2 + C5H10) in n‐pentane monomolecular cracking reaction increased from 14.62% to 69.24%. In addition, 0.57Ag/ZSM‐5 catalyst exhibited the conversion of n‐pentane up to 67.55 wt%, which improved the performance of the parent ZSM‐5 by 13.42 wt%. These analysis results of reaction mechanism may provide some insights for the rational design of catalysts and the full utilization of petrochemical resources.</description><subject>Acids</subject><subject>alkane cracking</subject><subject>Alkanes</subject><subject>Alkenes</subject><subject>bifunctional catalyst</subject><subject>Catalysts</subject><subject>Catalytic cracking</subject><subject>Dehydrogenation</subject><subject>Industrial production</subject><subject>light olefins</subject><subject>Pentane</subject><subject>Petrochemicals</subject><subject>Reaction mechanisms</subject><subject>reaction pathways</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqVw4A0sceKQ1j9JnB6rip9KlbjAOXI2m9YlOCF2qXLjEXhGngS36ZXTalbfjEZDyC1nE86YmGoDE56JND0jI57EKkpmLDknI8YYj8KDX5Ir57ZBCZWJEamX1pn1xlNjfUNBe1333gCFTsO7sWvaar_Z697RpqL29_unReu1Rdp8YUcLU-0seNNYXZ_MzjsaktquKXeAtD6GNzVWxrprclHp2uHN6Y7J2-PD6-I5Wr08LRfzVQQiUWmkEVkhMwlllspEZakuQagYMpRJHCNw5ACqUBWXJZZVoVCLA1wgxCBTlGNyN-SGFp87dD7fNrsudHS5mPFUzKSI40DdDxR0jXMdVnnbmQ_d9Tln-WHMPIyZH8cM7HRg96bG_n8wny8Xg-MP0OB53A</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Zhang, Xinyang</creator><creator>Li, Yue</creator><creator>Lu, Jiarong</creator><creator>Hu, Yuhang</creator><creator>Chen, Junfeng</creator><creator>Ren, Delun</creator><creator>Li, Ze</creator><creator>Zhang, Qingchao</creator><creator>Yan, Hao</creator><creator>Chen, Xiaobo</creator><creator>Liu, Yibin</creator><creator>Yang, Chaohe</creator><general>John Wiley & Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9180-0190</orcidid><orcidid>https://orcid.org/0000-0003-1531-3053</orcidid></search><sort><creationdate>202402</creationdate><title>Insight into catalytic cracking pathways of n‐pentane over bifunctional catalysts to produce light olefins</title><author>Zhang, Xinyang ; Li, Yue ; Lu, Jiarong ; Hu, Yuhang ; Chen, Junfeng ; Ren, Delun ; Li, Ze ; Zhang, Qingchao ; Yan, Hao ; Chen, Xiaobo ; Liu, Yibin ; Yang, Chaohe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2576-aee0b383cd8635786adc274c8e3544ec1e1cc7b7f13dedfb7ea23cd8bec4c36e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acids</topic><topic>alkane cracking</topic><topic>Alkanes</topic><topic>Alkenes</topic><topic>bifunctional catalyst</topic><topic>Catalysts</topic><topic>Catalytic cracking</topic><topic>Dehydrogenation</topic><topic>Industrial production</topic><topic>light olefins</topic><topic>Pentane</topic><topic>Petrochemicals</topic><topic>Reaction mechanisms</topic><topic>reaction pathways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xinyang</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Lu, Jiarong</creatorcontrib><creatorcontrib>Hu, Yuhang</creatorcontrib><creatorcontrib>Chen, Junfeng</creatorcontrib><creatorcontrib>Ren, Delun</creatorcontrib><creatorcontrib>Li, Ze</creatorcontrib><creatorcontrib>Zhang, Qingchao</creatorcontrib><creatorcontrib>Yan, Hao</creatorcontrib><creatorcontrib>Chen, Xiaobo</creatorcontrib><creatorcontrib>Liu, Yibin</creatorcontrib><creatorcontrib>Yang, Chaohe</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xinyang</au><au>Li, Yue</au><au>Lu, Jiarong</au><au>Hu, Yuhang</au><au>Chen, Junfeng</au><au>Ren, Delun</au><au>Li, Ze</au><au>Zhang, Qingchao</au><au>Yan, Hao</au><au>Chen, Xiaobo</au><au>Liu, Yibin</au><au>Yang, Chaohe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insight into catalytic cracking pathways of n‐pentane over bifunctional catalysts to produce light olefins</atitle><jtitle>AIChE journal</jtitle><date>2024-02</date><risdate>2024</risdate><volume>70</volume><issue>2</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Revealing the reaction mechanism to guide the industrial production of targeted products still remains a grand challenge for catalytic cracking of light alkanes to olefins over metal‐acid bifunctional catalyst. Herein, we systematically investigated the reaction mechanism of n‐pentane cracking on the Ag/ZSM‐5 bifunctional catalyst featuring both dehydrogenation and cracking capabilities. Specifically, overall cracking network of n‐pentane was comprehensively constructed to show the roles of metal dehydrogenation sites and acid sites respectively, in which metal Ag could substitute the H of the Brønsted acid site to form the Al–O–Ag linkage with enhanced adsorption and activation of n‐pentane, while Brønsted acid site with weak acid strength relay to promote cracking reaction. Thanks to this synergy of the two active sites, the apparent activation energy of n‐pentane cracking to light olefins was decreased from 82.77 KJ/mol to 68.26 KJ/mol and the proportion of specific path (C5H12 → H2 + C5H10) in n‐pentane monomolecular cracking reaction increased from 14.62% to 69.24%. In addition, 0.57Ag/ZSM‐5 catalyst exhibited the conversion of n‐pentane up to 67.55 wt%, which improved the performance of the parent ZSM‐5 by 13.42 wt%. These analysis results of reaction mechanism may provide some insights for the rational design of catalysts and the full utilization of petrochemical resources.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/aic.18266</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9180-0190</orcidid><orcidid>https://orcid.org/0000-0003-1531-3053</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2024-02, Vol.70 (2), p.n/a |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_2916293244 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Acids alkane cracking Alkanes Alkenes bifunctional catalyst Catalysts Catalytic cracking Dehydrogenation Industrial production light olefins Pentane Petrochemicals Reaction mechanisms reaction pathways |
title | Insight into catalytic cracking pathways of n‐pentane over bifunctional catalysts to produce light olefins |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insight%20into%20catalytic%20cracking%20pathways%20of%20n%E2%80%90pentane%20over%20bifunctional%20catalysts%20to%20produce%20light%20olefins&rft.jtitle=AIChE%20journal&rft.au=Zhang,%20Xinyang&rft.date=2024-02&rft.volume=70&rft.issue=2&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.18266&rft_dat=%3Cproquest_cross%3E2916293244%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2576-aee0b383cd8635786adc274c8e3544ec1e1cc7b7f13dedfb7ea23cd8bec4c36e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2916293244&rft_id=info:pmid/&rfr_iscdi=true |