Loading…
Empirical attrition modelling and discrimination: Balancing validity and group differences
Attrition models combine variables into statistical algorithms to understand and predict employee turnover. People analytics teams and external vendors use attrition models to offer insights and to develop organisational interventions. However, if attrition models or other data‐driven models inform...
Saved in:
Published in: | Human resource management journal 2024-01, Vol.34 (1), p.1-19 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3735-f23d8bfa7788387309d0e3a24310f5abc145bbb17ffdc1d6469d39c901960d8b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3735-f23d8bfa7788387309d0e3a24310f5abc145bbb17ffdc1d6469d39c901960d8b3 |
container_end_page | 19 |
container_issue | 1 |
container_start_page | 1 |
container_title | Human resource management journal |
container_volume | 34 |
creator | Speer, Andrew B. |
description | Attrition models combine variables into statistical algorithms to understand and predict employee turnover. People analytics teams and external vendors use attrition models to offer insights and to develop organisational interventions. However, if attrition models or other data‐driven models inform employment decisions, model scores may then be subjected to civil rights laws and diversity concerns resulting from group differences in scores. This paper discusses adverse impact when building attrition models, outlining how researchers test for adverse impact in this context, strategies to reduce group differences and how attrition modelling and other human resources ‘big data’ predictions fit within larger validity frameworks. Procedures were applied to field data in an applied demonstration of an attrition model with disparate impact. Model revisions resulted in adverse impact reductions while simultaneously maintaining model validity. Collectively, this paper provides timely attention to important aspects of the people analytics, turnover and legal domains. |
doi_str_mv | 10.1111/1748-8583.12355 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2916386368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916386368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-f23d8bfa7788387309d0e3a24310f5abc145bbb17ffdc1d6469d39c901960d8b3</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EEqUws0ZiDrXj2LHZoCoUVISEYGGxHH9UrlIn2Cmo_z1Og1i55aR7v3enewBcIniNUs1QVbKcEYavUYEJOQKTv8kxmEBOypxgTk7BWYwbCBNEywn4WGw7F5ySTSb7PrjetT7btto0jfPrTHqdaRdVcFvn5SDeZHeykV4N6pdsnHb9_oCtQ7vrEmytCcYrE8_BiZVNNBe_fQre7xdv82W-enl4nN-ucoUrTHJbYM1qK6uKMcwqDLmGBsuixAhaImuFSlLXNaqs1QppWlKuMVccIk5hcuIpuBr3dqH93JnYi027Cz6dFAVHFDOKKUvUbKRUaGMMxoouPSXDXiAohgDFEJcY4hKHAJODjo5v15j9f7hYvj4_jcYfyKhzZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916386368</pqid></control><display><type>article</type><title>Empirical attrition modelling and discrimination: Balancing validity and group differences</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Speer, Andrew B.</creator><creatorcontrib>Speer, Andrew B.</creatorcontrib><description>Attrition models combine variables into statistical algorithms to understand and predict employee turnover. People analytics teams and external vendors use attrition models to offer insights and to develop organisational interventions. However, if attrition models or other data‐driven models inform employment decisions, model scores may then be subjected to civil rights laws and diversity concerns resulting from group differences in scores. This paper discusses adverse impact when building attrition models, outlining how researchers test for adverse impact in this context, strategies to reduce group differences and how attrition modelling and other human resources ‘big data’ predictions fit within larger validity frameworks. Procedures were applied to field data in an applied demonstration of an attrition model with disparate impact. Model revisions resulted in adverse impact reductions while simultaneously maintaining model validity. Collectively, this paper provides timely attention to important aspects of the people analytics, turnover and legal domains.</description><identifier>ISSN: 0954-5395</identifier><identifier>EISSN: 1748-8583</identifier><identifier>DOI: 10.1111/1748-8583.12355</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>adverse impact ; attrition modelling ; big data ; discrimination ; HR analytics ; Human resource management ; machine learning ; people analytics ; turnover</subject><ispartof>Human resource management journal, 2024-01, Vol.34 (1), p.1-19</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-f23d8bfa7788387309d0e3a24310f5abc145bbb17ffdc1d6469d39c901960d8b3</citedby><cites>FETCH-LOGICAL-c3735-f23d8bfa7788387309d0e3a24310f5abc145bbb17ffdc1d6469d39c901960d8b3</cites><orcidid>0000-0002-3376-2103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Speer, Andrew B.</creatorcontrib><title>Empirical attrition modelling and discrimination: Balancing validity and group differences</title><title>Human resource management journal</title><description>Attrition models combine variables into statistical algorithms to understand and predict employee turnover. People analytics teams and external vendors use attrition models to offer insights and to develop organisational interventions. However, if attrition models or other data‐driven models inform employment decisions, model scores may then be subjected to civil rights laws and diversity concerns resulting from group differences in scores. This paper discusses adverse impact when building attrition models, outlining how researchers test for adverse impact in this context, strategies to reduce group differences and how attrition modelling and other human resources ‘big data’ predictions fit within larger validity frameworks. Procedures were applied to field data in an applied demonstration of an attrition model with disparate impact. Model revisions resulted in adverse impact reductions while simultaneously maintaining model validity. Collectively, this paper provides timely attention to important aspects of the people analytics, turnover and legal domains.</description><subject>adverse impact</subject><subject>attrition modelling</subject><subject>big data</subject><subject>discrimination</subject><subject>HR analytics</subject><subject>Human resource management</subject><subject>machine learning</subject><subject>people analytics</subject><subject>turnover</subject><issn>0954-5395</issn><issn>1748-8583</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxS0EEqUws0ZiDrXj2LHZoCoUVISEYGGxHH9UrlIn2Cmo_z1Og1i55aR7v3enewBcIniNUs1QVbKcEYavUYEJOQKTv8kxmEBOypxgTk7BWYwbCBNEywn4WGw7F5ySTSb7PrjetT7btto0jfPrTHqdaRdVcFvn5SDeZHeykV4N6pdsnHb9_oCtQ7vrEmytCcYrE8_BiZVNNBe_fQre7xdv82W-enl4nN-ucoUrTHJbYM1qK6uKMcwqDLmGBsuixAhaImuFSlLXNaqs1QppWlKuMVccIk5hcuIpuBr3dqH93JnYi027Cz6dFAVHFDOKKUvUbKRUaGMMxoouPSXDXiAohgDFEJcY4hKHAJODjo5v15j9f7hYvj4_jcYfyKhzZQ</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Speer, Andrew B.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3376-2103</orcidid></search><sort><creationdate>202401</creationdate><title>Empirical attrition modelling and discrimination: Balancing validity and group differences</title><author>Speer, Andrew B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-f23d8bfa7788387309d0e3a24310f5abc145bbb17ffdc1d6469d39c901960d8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adverse impact</topic><topic>attrition modelling</topic><topic>big data</topic><topic>discrimination</topic><topic>HR analytics</topic><topic>Human resource management</topic><topic>machine learning</topic><topic>people analytics</topic><topic>turnover</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Speer, Andrew B.</creatorcontrib><collection>CrossRef</collection><jtitle>Human resource management journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Speer, Andrew B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical attrition modelling and discrimination: Balancing validity and group differences</atitle><jtitle>Human resource management journal</jtitle><date>2024-01</date><risdate>2024</risdate><volume>34</volume><issue>1</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>0954-5395</issn><eissn>1748-8583</eissn><abstract>Attrition models combine variables into statistical algorithms to understand and predict employee turnover. People analytics teams and external vendors use attrition models to offer insights and to develop organisational interventions. However, if attrition models or other data‐driven models inform employment decisions, model scores may then be subjected to civil rights laws and diversity concerns resulting from group differences in scores. This paper discusses adverse impact when building attrition models, outlining how researchers test for adverse impact in this context, strategies to reduce group differences and how attrition modelling and other human resources ‘big data’ predictions fit within larger validity frameworks. Procedures were applied to field data in an applied demonstration of an attrition model with disparate impact. Model revisions resulted in adverse impact reductions while simultaneously maintaining model validity. Collectively, this paper provides timely attention to important aspects of the people analytics, turnover and legal domains.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/1748-8583.12355</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-3376-2103</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-5395 |
ispartof | Human resource management journal, 2024-01, Vol.34 (1), p.1-19 |
issn | 0954-5395 1748-8583 |
language | eng |
recordid | cdi_proquest_journals_2916386368 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | adverse impact attrition modelling big data discrimination HR analytics Human resource management machine learning people analytics turnover |
title | Empirical attrition modelling and discrimination: Balancing validity and group differences |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20attrition%20modelling%20and%20discrimination:%20Balancing%20validity%20and%20group%20differences&rft.jtitle=Human%20resource%20management%20journal&rft.au=Speer,%20Andrew%20B.&rft.date=2024-01&rft.volume=34&rft.issue=1&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=0954-5395&rft.eissn=1748-8583&rft_id=info:doi/10.1111/1748-8583.12355&rft_dat=%3Cproquest_cross%3E2916386368%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3735-f23d8bfa7788387309d0e3a24310f5abc145bbb17ffdc1d6469d39c901960d8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2916386368&rft_id=info:pmid/&rfr_iscdi=true |