Loading…

Empirical attrition modelling and discrimination: Balancing validity and group differences

Attrition models combine variables into statistical algorithms to understand and predict employee turnover. People analytics teams and external vendors use attrition models to offer insights and to develop organisational interventions. However, if attrition models or other data‐driven models inform...

Full description

Saved in:
Bibliographic Details
Published in:Human resource management journal 2024-01, Vol.34 (1), p.1-19
Main Author: Speer, Andrew B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3735-f23d8bfa7788387309d0e3a24310f5abc145bbb17ffdc1d6469d39c901960d8b3
cites cdi_FETCH-LOGICAL-c3735-f23d8bfa7788387309d0e3a24310f5abc145bbb17ffdc1d6469d39c901960d8b3
container_end_page 19
container_issue 1
container_start_page 1
container_title Human resource management journal
container_volume 34
creator Speer, Andrew B.
description Attrition models combine variables into statistical algorithms to understand and predict employee turnover. People analytics teams and external vendors use attrition models to offer insights and to develop organisational interventions. However, if attrition models or other data‐driven models inform employment decisions, model scores may then be subjected to civil rights laws and diversity concerns resulting from group differences in scores. This paper discusses adverse impact when building attrition models, outlining how researchers test for adverse impact in this context, strategies to reduce group differences and how attrition modelling and other human resources ‘big data’ predictions fit within larger validity frameworks. Procedures were applied to field data in an applied demonstration of an attrition model with disparate impact. Model revisions resulted in adverse impact reductions while simultaneously maintaining model validity. Collectively, this paper provides timely attention to important aspects of the people analytics, turnover and legal domains.
doi_str_mv 10.1111/1748-8583.12355
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2916386368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916386368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-f23d8bfa7788387309d0e3a24310f5abc145bbb17ffdc1d6469d39c901960d8b3</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EEqUws0ZiDrXj2LHZoCoUVISEYGGxHH9UrlIn2Cmo_z1Og1i55aR7v3enewBcIniNUs1QVbKcEYavUYEJOQKTv8kxmEBOypxgTk7BWYwbCBNEywn4WGw7F5ySTSb7PrjetT7btto0jfPrTHqdaRdVcFvn5SDeZHeykV4N6pdsnHb9_oCtQ7vrEmytCcYrE8_BiZVNNBe_fQre7xdv82W-enl4nN-ucoUrTHJbYM1qK6uKMcwqDLmGBsuixAhaImuFSlLXNaqs1QppWlKuMVccIk5hcuIpuBr3dqH93JnYi027Cz6dFAVHFDOKKUvUbKRUaGMMxoouPSXDXiAohgDFEJcY4hKHAJODjo5v15j9f7hYvj4_jcYfyKhzZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916386368</pqid></control><display><type>article</type><title>Empirical attrition modelling and discrimination: Balancing validity and group differences</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Speer, Andrew B.</creator><creatorcontrib>Speer, Andrew B.</creatorcontrib><description>Attrition models combine variables into statistical algorithms to understand and predict employee turnover. People analytics teams and external vendors use attrition models to offer insights and to develop organisational interventions. However, if attrition models or other data‐driven models inform employment decisions, model scores may then be subjected to civil rights laws and diversity concerns resulting from group differences in scores. This paper discusses adverse impact when building attrition models, outlining how researchers test for adverse impact in this context, strategies to reduce group differences and how attrition modelling and other human resources ‘big data’ predictions fit within larger validity frameworks. Procedures were applied to field data in an applied demonstration of an attrition model with disparate impact. Model revisions resulted in adverse impact reductions while simultaneously maintaining model validity. Collectively, this paper provides timely attention to important aspects of the people analytics, turnover and legal domains.</description><identifier>ISSN: 0954-5395</identifier><identifier>EISSN: 1748-8583</identifier><identifier>DOI: 10.1111/1748-8583.12355</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>adverse impact ; attrition modelling ; big data ; discrimination ; HR analytics ; Human resource management ; machine learning ; people analytics ; turnover</subject><ispartof>Human resource management journal, 2024-01, Vol.34 (1), p.1-19</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-f23d8bfa7788387309d0e3a24310f5abc145bbb17ffdc1d6469d39c901960d8b3</citedby><cites>FETCH-LOGICAL-c3735-f23d8bfa7788387309d0e3a24310f5abc145bbb17ffdc1d6469d39c901960d8b3</cites><orcidid>0000-0002-3376-2103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Speer, Andrew B.</creatorcontrib><title>Empirical attrition modelling and discrimination: Balancing validity and group differences</title><title>Human resource management journal</title><description>Attrition models combine variables into statistical algorithms to understand and predict employee turnover. People analytics teams and external vendors use attrition models to offer insights and to develop organisational interventions. However, if attrition models or other data‐driven models inform employment decisions, model scores may then be subjected to civil rights laws and diversity concerns resulting from group differences in scores. This paper discusses adverse impact when building attrition models, outlining how researchers test for adverse impact in this context, strategies to reduce group differences and how attrition modelling and other human resources ‘big data’ predictions fit within larger validity frameworks. Procedures were applied to field data in an applied demonstration of an attrition model with disparate impact. Model revisions resulted in adverse impact reductions while simultaneously maintaining model validity. Collectively, this paper provides timely attention to important aspects of the people analytics, turnover and legal domains.</description><subject>adverse impact</subject><subject>attrition modelling</subject><subject>big data</subject><subject>discrimination</subject><subject>HR analytics</subject><subject>Human resource management</subject><subject>machine learning</subject><subject>people analytics</subject><subject>turnover</subject><issn>0954-5395</issn><issn>1748-8583</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxS0EEqUws0ZiDrXj2LHZoCoUVISEYGGxHH9UrlIn2Cmo_z1Og1i55aR7v3enewBcIniNUs1QVbKcEYavUYEJOQKTv8kxmEBOypxgTk7BWYwbCBNEywn4WGw7F5ySTSb7PrjetT7btto0jfPrTHqdaRdVcFvn5SDeZHeykV4N6pdsnHb9_oCtQ7vrEmytCcYrE8_BiZVNNBe_fQre7xdv82W-enl4nN-ucoUrTHJbYM1qK6uKMcwqDLmGBsuixAhaImuFSlLXNaqs1QppWlKuMVccIk5hcuIpuBr3dqH93JnYi027Cz6dFAVHFDOKKUvUbKRUaGMMxoouPSXDXiAohgDFEJcY4hKHAJODjo5v15j9f7hYvj4_jcYfyKhzZQ</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Speer, Andrew B.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3376-2103</orcidid></search><sort><creationdate>202401</creationdate><title>Empirical attrition modelling and discrimination: Balancing validity and group differences</title><author>Speer, Andrew B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-f23d8bfa7788387309d0e3a24310f5abc145bbb17ffdc1d6469d39c901960d8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adverse impact</topic><topic>attrition modelling</topic><topic>big data</topic><topic>discrimination</topic><topic>HR analytics</topic><topic>Human resource management</topic><topic>machine learning</topic><topic>people analytics</topic><topic>turnover</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Speer, Andrew B.</creatorcontrib><collection>CrossRef</collection><jtitle>Human resource management journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Speer, Andrew B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical attrition modelling and discrimination: Balancing validity and group differences</atitle><jtitle>Human resource management journal</jtitle><date>2024-01</date><risdate>2024</risdate><volume>34</volume><issue>1</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>0954-5395</issn><eissn>1748-8583</eissn><abstract>Attrition models combine variables into statistical algorithms to understand and predict employee turnover. People analytics teams and external vendors use attrition models to offer insights and to develop organisational interventions. However, if attrition models or other data‐driven models inform employment decisions, model scores may then be subjected to civil rights laws and diversity concerns resulting from group differences in scores. This paper discusses adverse impact when building attrition models, outlining how researchers test for adverse impact in this context, strategies to reduce group differences and how attrition modelling and other human resources ‘big data’ predictions fit within larger validity frameworks. Procedures were applied to field data in an applied demonstration of an attrition model with disparate impact. Model revisions resulted in adverse impact reductions while simultaneously maintaining model validity. Collectively, this paper provides timely attention to important aspects of the people analytics, turnover and legal domains.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/1748-8583.12355</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-3376-2103</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-5395
ispartof Human resource management journal, 2024-01, Vol.34 (1), p.1-19
issn 0954-5395
1748-8583
language eng
recordid cdi_proquest_journals_2916386368
source Wiley-Blackwell Read & Publish Collection
subjects adverse impact
attrition modelling
big data
discrimination
HR analytics
Human resource management
machine learning
people analytics
turnover
title Empirical attrition modelling and discrimination: Balancing validity and group differences
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20attrition%20modelling%20and%20discrimination:%20Balancing%20validity%20and%20group%20differences&rft.jtitle=Human%20resource%20management%20journal&rft.au=Speer,%20Andrew%20B.&rft.date=2024-01&rft.volume=34&rft.issue=1&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=0954-5395&rft.eissn=1748-8583&rft_id=info:doi/10.1111/1748-8583.12355&rft_dat=%3Cproquest_cross%3E2916386368%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3735-f23d8bfa7788387309d0e3a24310f5abc145bbb17ffdc1d6469d39c901960d8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2916386368&rft_id=info:pmid/&rfr_iscdi=true