Loading…

Convolutional neural network for automatic defect detection in composites

Fiber-reinforced polymers (FRP) are widely recommended in the aerospace and automotive industries because they are lightweight and have superior mechanical qualities to metals. Poor manufacturing conditions or cyclic usage leads to defect generation in these materials, and a proper non-destructive t...

Full description

Saved in:
Bibliographic Details
Main Authors: Prasanthi, Y. Naga, Ghali, V. S., Vesala, G. T., Suresh, B.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2512
creator Prasanthi, Y. Naga
Ghali, V. S.
Vesala, G. T.
Suresh, B.
description Fiber-reinforced polymers (FRP) are widely recommended in the aerospace and automotive industries because they are lightweight and have superior mechanical qualities to metals. Poor manufacturing conditions or cyclic usage leads to defect generation in these materials, and a proper non-destructive testing (NDT) method assesses integrity without impairing their future application. Infrared NDT (IRNDT) is gaining interest with machine learning-based advanced processing approaches in the recent past, among numerous NDT techniques. However, the thermographic data is highly imbalanced with fewer defect region thermal profiles than their non-defective counterparts. The present article introduces a deep one-class classification (Deep-OCC) model in quadratic frequency modulated thermal wave imaging for automatic anomaly detection. A carbon fiber-reinforced polymer (CFRP) sample with flat bottom holes of different sizes at various depths is used to certify the proposed methodology. Few machine learning (ML) and thermographic metrics are used to evaluate the suitability of the deep OCC by comparing it with conventional deep one-class classification models for the thermographic data.
doi_str_mv 10.1063/5.0111836
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2917370079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917370079</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1686-4b8a0db17e55db6e21aa8686022f44f38c2f99148f1a23ea43ef963c6555fe9d3</originalsourceid><addsrcrecordid>eNotkE9LwzAchoMoOKcHv0HBm9CZX_7nKEPnYOBFwVtI2wQ626YmqeK3t3M7PYf34eXlRegW8AqwoA98hQFAUXGGFsA5lFKAOEcLjDUrCaMfl-gqpT3GREupFmi7DsN36KbchsF2xeCm-I_8E-Jn4UMs7JRDb3NbF43zrs4z8ozZL9qhqEM_htRml67RhbddcjcnLtH789Pb-qXcvW6268ddOYJQomSVsripQDrOm0o4AtaqOcCEeMY8VTXxWgNTHiyhzjLqvBa0Fpxz73RDl-ju2DvG8DW5lM0-THEenwzRIKnEWOrZuj9aqW6zPaw1Y2x7G38NYHO4ynBzuor-ASMIW1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2917370079</pqid></control><display><type>conference_proceeding</type><title>Convolutional neural network for automatic defect detection in composites</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Prasanthi, Y. Naga ; Ghali, V. S. ; Vesala, G. T. ; Suresh, B.</creator><contributor>Madhav, B.T.P. ; Rehman, Md Z</contributor><creatorcontrib>Prasanthi, Y. Naga ; Ghali, V. S. ; Vesala, G. T. ; Suresh, B. ; Madhav, B.T.P. ; Rehman, Md Z</creatorcontrib><description>Fiber-reinforced polymers (FRP) are widely recommended in the aerospace and automotive industries because they are lightweight and have superior mechanical qualities to metals. Poor manufacturing conditions or cyclic usage leads to defect generation in these materials, and a proper non-destructive testing (NDT) method assesses integrity without impairing their future application. Infrared NDT (IRNDT) is gaining interest with machine learning-based advanced processing approaches in the recent past, among numerous NDT techniques. However, the thermographic data is highly imbalanced with fewer defect region thermal profiles than their non-defective counterparts. The present article introduces a deep one-class classification (Deep-OCC) model in quadratic frequency modulated thermal wave imaging for automatic anomaly detection. A carbon fiber-reinforced polymer (CFRP) sample with flat bottom holes of different sizes at various depths is used to certify the proposed methodology. Few machine learning (ML) and thermographic metrics are used to evaluate the suitability of the deep OCC by comparing it with conventional deep one-class classification models for the thermographic data.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0111836</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerospace industry ; Anomalies ; Artificial neural networks ; Carbon fiber reinforced plastics ; Classification ; Defects ; Fiber reinforced polymers ; Machine learning ; Nondestructive testing ; Thermal imaging ; Thermal wave imaging ; Thermography</subject><ispartof>AIP conference proceedings, 2024, Vol.2512 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids></links><search><contributor>Madhav, B.T.P.</contributor><contributor>Rehman, Md Z</contributor><creatorcontrib>Prasanthi, Y. Naga</creatorcontrib><creatorcontrib>Ghali, V. S.</creatorcontrib><creatorcontrib>Vesala, G. T.</creatorcontrib><creatorcontrib>Suresh, B.</creatorcontrib><title>Convolutional neural network for automatic defect detection in composites</title><title>AIP conference proceedings</title><description>Fiber-reinforced polymers (FRP) are widely recommended in the aerospace and automotive industries because they are lightweight and have superior mechanical qualities to metals. Poor manufacturing conditions or cyclic usage leads to defect generation in these materials, and a proper non-destructive testing (NDT) method assesses integrity without impairing their future application. Infrared NDT (IRNDT) is gaining interest with machine learning-based advanced processing approaches in the recent past, among numerous NDT techniques. However, the thermographic data is highly imbalanced with fewer defect region thermal profiles than their non-defective counterparts. The present article introduces a deep one-class classification (Deep-OCC) model in quadratic frequency modulated thermal wave imaging for automatic anomaly detection. A carbon fiber-reinforced polymer (CFRP) sample with flat bottom holes of different sizes at various depths is used to certify the proposed methodology. Few machine learning (ML) and thermographic metrics are used to evaluate the suitability of the deep OCC by comparing it with conventional deep one-class classification models for the thermographic data.</description><subject>Aerospace industry</subject><subject>Anomalies</subject><subject>Artificial neural networks</subject><subject>Carbon fiber reinforced plastics</subject><subject>Classification</subject><subject>Defects</subject><subject>Fiber reinforced polymers</subject><subject>Machine learning</subject><subject>Nondestructive testing</subject><subject>Thermal imaging</subject><subject>Thermal wave imaging</subject><subject>Thermography</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9LwzAchoMoOKcHv0HBm9CZX_7nKEPnYOBFwVtI2wQ626YmqeK3t3M7PYf34eXlRegW8AqwoA98hQFAUXGGFsA5lFKAOEcLjDUrCaMfl-gqpT3GREupFmi7DsN36KbchsF2xeCm-I_8E-Jn4UMs7JRDb3NbF43zrs4z8ozZL9qhqEM_htRml67RhbddcjcnLtH789Pb-qXcvW6268ddOYJQomSVsripQDrOm0o4AtaqOcCEeMY8VTXxWgNTHiyhzjLqvBa0Fpxz73RDl-ju2DvG8DW5lM0-THEenwzRIKnEWOrZuj9aqW6zPaw1Y2x7G38NYHO4ynBzuor-ASMIW1w</recordid><startdate>20240122</startdate><enddate>20240122</enddate><creator>Prasanthi, Y. Naga</creator><creator>Ghali, V. S.</creator><creator>Vesala, G. T.</creator><creator>Suresh, B.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240122</creationdate><title>Convolutional neural network for automatic defect detection in composites</title><author>Prasanthi, Y. Naga ; Ghali, V. S. ; Vesala, G. T. ; Suresh, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1686-4b8a0db17e55db6e21aa8686022f44f38c2f99148f1a23ea43ef963c6555fe9d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace industry</topic><topic>Anomalies</topic><topic>Artificial neural networks</topic><topic>Carbon fiber reinforced plastics</topic><topic>Classification</topic><topic>Defects</topic><topic>Fiber reinforced polymers</topic><topic>Machine learning</topic><topic>Nondestructive testing</topic><topic>Thermal imaging</topic><topic>Thermal wave imaging</topic><topic>Thermography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasanthi, Y. Naga</creatorcontrib><creatorcontrib>Ghali, V. S.</creatorcontrib><creatorcontrib>Vesala, G. T.</creatorcontrib><creatorcontrib>Suresh, B.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasanthi, Y. Naga</au><au>Ghali, V. S.</au><au>Vesala, G. T.</au><au>Suresh, B.</au><au>Madhav, B.T.P.</au><au>Rehman, Md Z</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Convolutional neural network for automatic defect detection in composites</atitle><btitle>AIP conference proceedings</btitle><date>2024-01-22</date><risdate>2024</risdate><volume>2512</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Fiber-reinforced polymers (FRP) are widely recommended in the aerospace and automotive industries because they are lightweight and have superior mechanical qualities to metals. Poor manufacturing conditions or cyclic usage leads to defect generation in these materials, and a proper non-destructive testing (NDT) method assesses integrity without impairing their future application. Infrared NDT (IRNDT) is gaining interest with machine learning-based advanced processing approaches in the recent past, among numerous NDT techniques. However, the thermographic data is highly imbalanced with fewer defect region thermal profiles than their non-defective counterparts. The present article introduces a deep one-class classification (Deep-OCC) model in quadratic frequency modulated thermal wave imaging for automatic anomaly detection. A carbon fiber-reinforced polymer (CFRP) sample with flat bottom holes of different sizes at various depths is used to certify the proposed methodology. Few machine learning (ML) and thermographic metrics are used to evaluate the suitability of the deep OCC by comparing it with conventional deep one-class classification models for the thermographic data.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0111836</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2512 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2917370079
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Aerospace industry
Anomalies
Artificial neural networks
Carbon fiber reinforced plastics
Classification
Defects
Fiber reinforced polymers
Machine learning
Nondestructive testing
Thermal imaging
Thermal wave imaging
Thermography
title Convolutional neural network for automatic defect detection in composites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A57%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Convolutional%20neural%20network%20for%20automatic%20defect%20detection%20in%20composites&rft.btitle=AIP%20conference%20proceedings&rft.au=Prasanthi,%20Y.%20Naga&rft.date=2024-01-22&rft.volume=2512&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0111836&rft_dat=%3Cproquest_scita%3E2917370079%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1686-4b8a0db17e55db6e21aa8686022f44f38c2f99148f1a23ea43ef963c6555fe9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2917370079&rft_id=info:pmid/&rfr_iscdi=true