Loading…

A new approach to the Berlekamp-Massey-Sakata Algorithm. Improving Locator Decoding

We study the problem of the computation of Groebner basis for the ideal of linear recurring relations of a doubly periodic array. We find a set of indexes such that, along with some conditions, guarantees that the set of polynomials obtained at the last iteration in the Berlekamp-Massey-Sakata algor...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-01
Main Authors: Bernal, José Joaquín, Juan Jacobo Simón
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bernal, José Joaquín
Juan Jacobo Simón
description We study the problem of the computation of Groebner basis for the ideal of linear recurring relations of a doubly periodic array. We find a set of indexes such that, along with some conditions, guarantees that the set of polynomials obtained at the last iteration in the Berlekamp-Massey-Sakata algorithm is exactly a Groebner basis for the mentioned ideal. Then, we apply these results to improve locator decoding in abelian codes.
doi_str_mv 10.48550/arxiv.2401.10527
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2917407285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917407285</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-5fea4e7f945c9ff31d29bb346880989b8bfaf7f60882b8fdce62a689adf39a5c3</originalsourceid><addsrcrecordid>eNotjl1rgzAYhcNgsNL1B-wusGtdfJOY5NJ1XwXHLtr78hqTaqvGqe22fz9huzpw4DnPIeQuYbHQUrIHHL7rSwyCJXHCJKgrsgDOk0gLgBuyGscjYwxSBVLyBdlmtHNfFPt-CGgrOgU6VY4-uqFxJ2z76B3H0f1EWzzhhDRrDmGop6qN6aadkUvdHWgeLE5hoE_OhnIubsm1x2Z0q_9ckt3L8279FuUfr5t1lkcoQUbSOxROeSOkNd7zpARTFFykWjOjTaELj175lGkNhfaldSlgqg2WnhuUli_J_d_s_OPz7MZpfwznoZuNezCJEkyBlvwX3vlR7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917407285</pqid></control><display><type>article</type><title>A new approach to the Berlekamp-Massey-Sakata Algorithm. Improving Locator Decoding</title><source>Publicly Available Content (ProQuest)</source><creator>Bernal, José Joaquín ; Juan Jacobo Simón</creator><creatorcontrib>Bernal, José Joaquín ; Juan Jacobo Simón</creatorcontrib><description>We study the problem of the computation of Groebner basis for the ideal of linear recurring relations of a doubly periodic array. We find a set of indexes such that, along with some conditions, guarantees that the set of polynomials obtained at the last iteration in the Berlekamp-Massey-Sakata algorithm is exactly a Groebner basis for the mentioned ideal. Then, we apply these results to improve locator decoding in abelian codes.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2401.10527</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Decoding ; Iterative methods ; Polynomials ; Rings (mathematics)</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2917407285?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Bernal, José Joaquín</creatorcontrib><creatorcontrib>Juan Jacobo Simón</creatorcontrib><title>A new approach to the Berlekamp-Massey-Sakata Algorithm. Improving Locator Decoding</title><title>arXiv.org</title><description>We study the problem of the computation of Groebner basis for the ideal of linear recurring relations of a doubly periodic array. We find a set of indexes such that, along with some conditions, guarantees that the set of polynomials obtained at the last iteration in the Berlekamp-Massey-Sakata algorithm is exactly a Groebner basis for the mentioned ideal. Then, we apply these results to improve locator decoding in abelian codes.</description><subject>Algorithms</subject><subject>Decoding</subject><subject>Iterative methods</subject><subject>Polynomials</subject><subject>Rings (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjl1rgzAYhcNgsNL1B-wusGtdfJOY5NJ1XwXHLtr78hqTaqvGqe22fz9huzpw4DnPIeQuYbHQUrIHHL7rSwyCJXHCJKgrsgDOk0gLgBuyGscjYwxSBVLyBdlmtHNfFPt-CGgrOgU6VY4-uqFxJ2z76B3H0f1EWzzhhDRrDmGop6qN6aadkUvdHWgeLE5hoE_OhnIubsm1x2Z0q_9ckt3L8279FuUfr5t1lkcoQUbSOxROeSOkNd7zpARTFFykWjOjTaELj175lGkNhfaldSlgqg2WnhuUli_J_d_s_OPz7MZpfwznoZuNezCJEkyBlvwX3vlR7Q</recordid><startdate>20240119</startdate><enddate>20240119</enddate><creator>Bernal, José Joaquín</creator><creator>Juan Jacobo Simón</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240119</creationdate><title>A new approach to the Berlekamp-Massey-Sakata Algorithm. Improving Locator Decoding</title><author>Bernal, José Joaquín ; Juan Jacobo Simón</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-5fea4e7f945c9ff31d29bb346880989b8bfaf7f60882b8fdce62a689adf39a5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Decoding</topic><topic>Iterative methods</topic><topic>Polynomials</topic><topic>Rings (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Bernal, José Joaquín</creatorcontrib><creatorcontrib>Juan Jacobo Simón</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernal, José Joaquín</au><au>Juan Jacobo Simón</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new approach to the Berlekamp-Massey-Sakata Algorithm. Improving Locator Decoding</atitle><jtitle>arXiv.org</jtitle><date>2024-01-19</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We study the problem of the computation of Groebner basis for the ideal of linear recurring relations of a doubly periodic array. We find a set of indexes such that, along with some conditions, guarantees that the set of polynomials obtained at the last iteration in the Berlekamp-Massey-Sakata algorithm is exactly a Groebner basis for the mentioned ideal. Then, we apply these results to improve locator decoding in abelian codes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2401.10527</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2917407285
source Publicly Available Content (ProQuest)
subjects Algorithms
Decoding
Iterative methods
Polynomials
Rings (mathematics)
title A new approach to the Berlekamp-Massey-Sakata Algorithm. Improving Locator Decoding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A37%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20approach%20to%20the%20Berlekamp-Massey-Sakata%20Algorithm.%20Improving%20Locator%20Decoding&rft.jtitle=arXiv.org&rft.au=Bernal,%20Jos%C3%A9%20Joaqu%C3%ADn&rft.date=2024-01-19&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2401.10527&rft_dat=%3Cproquest%3E2917407285%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-5fea4e7f945c9ff31d29bb346880989b8bfaf7f60882b8fdce62a689adf39a5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2917407285&rft_id=info:pmid/&rfr_iscdi=true