Loading…
Photonic Supercoupling in Silicon Topological Waveguides
Electromagnetic wave coupling between photonic systems relies on the evanescent field typically confined within a single wavelength. Extending evanescent coupling distance requires low refractive index contrast and perfect momentum matching for achieving a large coupling ratio. Here, we report the d...
Saved in:
Published in: | arXiv.org 2024-01 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electromagnetic wave coupling between photonic systems relies on the evanescent field typically confined within a single wavelength. Extending evanescent coupling distance requires low refractive index contrast and perfect momentum matching for achieving a large coupling ratio. Here, we report the discovery of photonic supercoupling in a topological valley Hall pair of waveguides, showing a substantial improvement in coupling efficiency across multiple wavelengths. Experimentally, we realize ultra-high coupling ratios between waveguides through valley-conserved vortex flow of electromagnetic energy, attaining 95% coupling efficiency for separations of up to three wavelengths. This demonstration of photonic supercoupling in topological systems significantly extends the coupling distance between on-chip waveguides and components, paving the path for the development of supercoupled photonic integrated devices, optical sensing, and telecommunications. |
---|---|
ISSN: | 2331-8422 |