Loading…

Numerical study of instability mechanism in the air-core vortex formation process

Air-core vortices are a ubiquitous phenomenon in the intakes of hydropower stations. Due to the transient and instability of two-phase vorticial flow, the prediction of air-core vortex formation is challenging, and understanding of the instability mechanism remains elusive. In this study, the large...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of computational fluid mechanics 2023-12, Vol.17 (1)
Main Authors: Kan, Kan, Xu, Yuhang, Li, Zhixiang, Xu, Hui, Chen, Huixiang, Zi, Dan, Gao, Qiang, Shen, Lian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-59e5bb52943ee036f5e5dc78bf4586c41413617afb74d6e08bc70aa9b14089b23
cites cdi_FETCH-LOGICAL-c451t-59e5bb52943ee036f5e5dc78bf4586c41413617afb74d6e08bc70aa9b14089b23
container_end_page
container_issue 1
container_start_page
container_title Engineering applications of computational fluid mechanics
container_volume 17
creator Kan, Kan
Xu, Yuhang
Li, Zhixiang
Xu, Hui
Chen, Huixiang
Zi, Dan
Gao, Qiang
Shen, Lian
description Air-core vortices are a ubiquitous phenomenon in the intakes of hydropower stations. Due to the transient and instability of two-phase vorticial flow, the prediction of air-core vortex formation is challenging, and understanding of the instability mechanism remains elusive. In this study, the large eddy simulation (LES) method and a coupled level-set and volume-of-fluid (CLSVOF) method are performed to study air-core vortex formation in a benchmark reservoir with a horizontal intake pipe. The process of air-core vortex formation can be classified into an inception stage, an instability stage, and a stability stage. In the instability stage, the surface vortex repeatedly goes through the process of inception, enhancement, attenuation, and extinction. The movement of the counterrotating secondary vortices and water surface level fluctuation plays a negative role in air-core vortex formation. The additional motion generated by the counterrotating pair drives the pair to the back wall. The main vortex undergoes attenuation due to the stretching/tilting effects induced by the secondary vortex. Water level fluctuations briefly increase the submergence depth, which in turn reduces the vertical velocity gradient and vertical vorticity, destabilizing the vortex. The perturbation of the air-core vortex by water level fluctuations is present only at the beginning of the instability stage.
doi_str_mv 10.1080/19942060.2022.2156926
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917561474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_29eb65815f88405cb06b07ab29e5b90f</doaj_id><sourcerecordid>2917561474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-59e5bb52943ee036f5e5dc78bf4586c41413617afb74d6e08bc70aa9b14089b23</originalsourceid><addsrcrecordid>eNp9UctKBDEQHERBUT9BCHietZPJY3JTxMeCKIKCt5BkEo3MTDTJqvv3zu6qR0_dFFXVj6qqIwwzDC2cYCkpAQ4zAoTMCGZcEr5V7U24qAGap-11T-sVabc6zDkYYCAajAXdq-5vF4NLweoe5bLolih6FMZctAl9KEs0OPuix5CHCUXlxSEdUm1jcugjpuK-kI9p0CXEEb2laF3OB9WO1312hz91v3q8vHg4v65v7q7m52c3taUMl5pJx4xhRNLGOWi4Z451VrTGU9ZySzHFDcdCeyNoxx20xgrQWhpMoZWGNPvVfOPbRf2q3lIYdFqqqINaAzE9K51KsL1TRDrDWYuZb1sKzBrgBoQ2ZLWDBD95HW-8phveFy4X9RoXaZzWn7RYMI6poBOLbVg2xZyT839TMahVGOo3DLUKQ_2EMelON7owrr_1GVPfqaKXfUw-6dGGrJr_Lb4BOnOQFg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917561474</pqid></control><display><type>article</type><title>Numerical study of instability mechanism in the air-core vortex formation process</title><source>Taylor &amp; Francis Open Access</source><creator>Kan, Kan ; Xu, Yuhang ; Li, Zhixiang ; Xu, Hui ; Chen, Huixiang ; Zi, Dan ; Gao, Qiang ; Shen, Lian</creator><creatorcontrib>Kan, Kan ; Xu, Yuhang ; Li, Zhixiang ; Xu, Hui ; Chen, Huixiang ; Zi, Dan ; Gao, Qiang ; Shen, Lian</creatorcontrib><description>Air-core vortices are a ubiquitous phenomenon in the intakes of hydropower stations. Due to the transient and instability of two-phase vorticial flow, the prediction of air-core vortex formation is challenging, and understanding of the instability mechanism remains elusive. In this study, the large eddy simulation (LES) method and a coupled level-set and volume-of-fluid (CLSVOF) method are performed to study air-core vortex formation in a benchmark reservoir with a horizontal intake pipe. The process of air-core vortex formation can be classified into an inception stage, an instability stage, and a stability stage. In the instability stage, the surface vortex repeatedly goes through the process of inception, enhancement, attenuation, and extinction. The movement of the counterrotating secondary vortices and water surface level fluctuation plays a negative role in air-core vortex formation. The additional motion generated by the counterrotating pair drives the pair to the back wall. The main vortex undergoes attenuation due to the stretching/tilting effects induced by the secondary vortex. Water level fluctuations briefly increase the submergence depth, which in turn reduces the vertical velocity gradient and vertical vorticity, destabilizing the vortex. The perturbation of the air-core vortex by water level fluctuations is present only at the beginning of the instability stage.</description><identifier>ISSN: 1994-2060</identifier><identifier>EISSN: 1997-003X</identifier><identifier>DOI: 10.1080/19942060.2022.2156926</identifier><language>eng</language><publisher>Hong Kong: Taylor &amp; Francis</publisher><subject>Air-core vortex ; Attenuation ; counterrotating pair ; Flow stability ; Fluid flow ; Hydroelectric power stations ; Intake pipes ; Large eddy simulation ; Surface stability ; Two phase flow ; Velocity gradient ; Vortices ; Vorticity ; water level fluctuation ; Water level fluctuations ; wave</subject><ispartof>Engineering applications of computational fluid mechanics, 2023-12, Vol.17 (1)</ispartof><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2023</rights><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-59e5bb52943ee036f5e5dc78bf4586c41413617afb74d6e08bc70aa9b14089b23</citedby><cites>FETCH-LOGICAL-c451t-59e5bb52943ee036f5e5dc78bf4586c41413617afb74d6e08bc70aa9b14089b23</cites><orcidid>0000-0003-4135-0640 ; 0000-0002-4260-9899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/19942060.2022.2156926$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/19942060.2022.2156926$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Kan, Kan</creatorcontrib><creatorcontrib>Xu, Yuhang</creatorcontrib><creatorcontrib>Li, Zhixiang</creatorcontrib><creatorcontrib>Xu, Hui</creatorcontrib><creatorcontrib>Chen, Huixiang</creatorcontrib><creatorcontrib>Zi, Dan</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Shen, Lian</creatorcontrib><title>Numerical study of instability mechanism in the air-core vortex formation process</title><title>Engineering applications of computational fluid mechanics</title><description>Air-core vortices are a ubiquitous phenomenon in the intakes of hydropower stations. Due to the transient and instability of two-phase vorticial flow, the prediction of air-core vortex formation is challenging, and understanding of the instability mechanism remains elusive. In this study, the large eddy simulation (LES) method and a coupled level-set and volume-of-fluid (CLSVOF) method are performed to study air-core vortex formation in a benchmark reservoir with a horizontal intake pipe. The process of air-core vortex formation can be classified into an inception stage, an instability stage, and a stability stage. In the instability stage, the surface vortex repeatedly goes through the process of inception, enhancement, attenuation, and extinction. The movement of the counterrotating secondary vortices and water surface level fluctuation plays a negative role in air-core vortex formation. The additional motion generated by the counterrotating pair drives the pair to the back wall. The main vortex undergoes attenuation due to the stretching/tilting effects induced by the secondary vortex. Water level fluctuations briefly increase the submergence depth, which in turn reduces the vertical velocity gradient and vertical vorticity, destabilizing the vortex. The perturbation of the air-core vortex by water level fluctuations is present only at the beginning of the instability stage.</description><subject>Air-core vortex</subject><subject>Attenuation</subject><subject>counterrotating pair</subject><subject>Flow stability</subject><subject>Fluid flow</subject><subject>Hydroelectric power stations</subject><subject>Intake pipes</subject><subject>Large eddy simulation</subject><subject>Surface stability</subject><subject>Two phase flow</subject><subject>Velocity gradient</subject><subject>Vortices</subject><subject>Vorticity</subject><subject>water level fluctuation</subject><subject>Water level fluctuations</subject><subject>wave</subject><issn>1994-2060</issn><issn>1997-003X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9UctKBDEQHERBUT9BCHietZPJY3JTxMeCKIKCt5BkEo3MTDTJqvv3zu6qR0_dFFXVj6qqIwwzDC2cYCkpAQ4zAoTMCGZcEr5V7U24qAGap-11T-sVabc6zDkYYCAajAXdq-5vF4NLweoe5bLolih6FMZctAl9KEs0OPuix5CHCUXlxSEdUm1jcugjpuK-kI9p0CXEEb2laF3OB9WO1312hz91v3q8vHg4v65v7q7m52c3taUMl5pJx4xhRNLGOWi4Z451VrTGU9ZySzHFDcdCeyNoxx20xgrQWhpMoZWGNPvVfOPbRf2q3lIYdFqqqINaAzE9K51KsL1TRDrDWYuZb1sKzBrgBoQ2ZLWDBD95HW-8phveFy4X9RoXaZzWn7RYMI6poBOLbVg2xZyT839TMahVGOo3DLUKQ_2EMelON7owrr_1GVPfqaKXfUw-6dGGrJr_Lb4BOnOQFg</recordid><startdate>20231231</startdate><enddate>20231231</enddate><creator>Kan, Kan</creator><creator>Xu, Yuhang</creator><creator>Li, Zhixiang</creator><creator>Xu, Hui</creator><creator>Chen, Huixiang</creator><creator>Zi, Dan</creator><creator>Gao, Qiang</creator><creator>Shen, Lian</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>KR7</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4135-0640</orcidid><orcidid>https://orcid.org/0000-0002-4260-9899</orcidid></search><sort><creationdate>20231231</creationdate><title>Numerical study of instability mechanism in the air-core vortex formation process</title><author>Kan, Kan ; Xu, Yuhang ; Li, Zhixiang ; Xu, Hui ; Chen, Huixiang ; Zi, Dan ; Gao, Qiang ; Shen, Lian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-59e5bb52943ee036f5e5dc78bf4586c41413617afb74d6e08bc70aa9b14089b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air-core vortex</topic><topic>Attenuation</topic><topic>counterrotating pair</topic><topic>Flow stability</topic><topic>Fluid flow</topic><topic>Hydroelectric power stations</topic><topic>Intake pipes</topic><topic>Large eddy simulation</topic><topic>Surface stability</topic><topic>Two phase flow</topic><topic>Velocity gradient</topic><topic>Vortices</topic><topic>Vorticity</topic><topic>water level fluctuation</topic><topic>Water level fluctuations</topic><topic>wave</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kan, Kan</creatorcontrib><creatorcontrib>Xu, Yuhang</creatorcontrib><creatorcontrib>Li, Zhixiang</creatorcontrib><creatorcontrib>Xu, Hui</creatorcontrib><creatorcontrib>Chen, Huixiang</creatorcontrib><creatorcontrib>Zi, Dan</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Shen, Lian</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Civil Engineering Abstracts</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Engineering applications of computational fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kan, Kan</au><au>Xu, Yuhang</au><au>Li, Zhixiang</au><au>Xu, Hui</au><au>Chen, Huixiang</au><au>Zi, Dan</au><au>Gao, Qiang</au><au>Shen, Lian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study of instability mechanism in the air-core vortex formation process</atitle><jtitle>Engineering applications of computational fluid mechanics</jtitle><date>2023-12-31</date><risdate>2023</risdate><volume>17</volume><issue>1</issue><issn>1994-2060</issn><eissn>1997-003X</eissn><abstract>Air-core vortices are a ubiquitous phenomenon in the intakes of hydropower stations. Due to the transient and instability of two-phase vorticial flow, the prediction of air-core vortex formation is challenging, and understanding of the instability mechanism remains elusive. In this study, the large eddy simulation (LES) method and a coupled level-set and volume-of-fluid (CLSVOF) method are performed to study air-core vortex formation in a benchmark reservoir with a horizontal intake pipe. The process of air-core vortex formation can be classified into an inception stage, an instability stage, and a stability stage. In the instability stage, the surface vortex repeatedly goes through the process of inception, enhancement, attenuation, and extinction. The movement of the counterrotating secondary vortices and water surface level fluctuation plays a negative role in air-core vortex formation. The additional motion generated by the counterrotating pair drives the pair to the back wall. The main vortex undergoes attenuation due to the stretching/tilting effects induced by the secondary vortex. Water level fluctuations briefly increase the submergence depth, which in turn reduces the vertical velocity gradient and vertical vorticity, destabilizing the vortex. The perturbation of the air-core vortex by water level fluctuations is present only at the beginning of the instability stage.</abstract><cop>Hong Kong</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/19942060.2022.2156926</doi><orcidid>https://orcid.org/0000-0003-4135-0640</orcidid><orcidid>https://orcid.org/0000-0002-4260-9899</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1994-2060
ispartof Engineering applications of computational fluid mechanics, 2023-12, Vol.17 (1)
issn 1994-2060
1997-003X
language eng
recordid cdi_proquest_journals_2917561474
source Taylor & Francis Open Access
subjects Air-core vortex
Attenuation
counterrotating pair
Flow stability
Fluid flow
Hydroelectric power stations
Intake pipes
Large eddy simulation
Surface stability
Two phase flow
Velocity gradient
Vortices
Vorticity
water level fluctuation
Water level fluctuations
wave
title Numerical study of instability mechanism in the air-core vortex formation process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20of%20instability%20mechanism%20in%20the%20air-core%20vortex%20formation%20process&rft.jtitle=Engineering%20applications%20of%20computational%20fluid%20mechanics&rft.au=Kan,%20Kan&rft.date=2023-12-31&rft.volume=17&rft.issue=1&rft.issn=1994-2060&rft.eissn=1997-003X&rft_id=info:doi/10.1080/19942060.2022.2156926&rft_dat=%3Cproquest_cross%3E2917561474%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-59e5bb52943ee036f5e5dc78bf4586c41413617afb74d6e08bc70aa9b14089b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2917561474&rft_id=info:pmid/&rfr_iscdi=true