Loading…
Numerical study of instability mechanism in the air-core vortex formation process
Air-core vortices are a ubiquitous phenomenon in the intakes of hydropower stations. Due to the transient and instability of two-phase vorticial flow, the prediction of air-core vortex formation is challenging, and understanding of the instability mechanism remains elusive. In this study, the large...
Saved in:
Published in: | Engineering applications of computational fluid mechanics 2023-12, Vol.17 (1) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-59e5bb52943ee036f5e5dc78bf4586c41413617afb74d6e08bc70aa9b14089b23 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-59e5bb52943ee036f5e5dc78bf4586c41413617afb74d6e08bc70aa9b14089b23 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Engineering applications of computational fluid mechanics |
container_volume | 17 |
creator | Kan, Kan Xu, Yuhang Li, Zhixiang Xu, Hui Chen, Huixiang Zi, Dan Gao, Qiang Shen, Lian |
description | Air-core vortices are a ubiquitous phenomenon in the intakes of hydropower stations. Due to the transient and instability of two-phase vorticial flow, the prediction of air-core vortex formation is challenging, and understanding of the instability mechanism remains elusive. In this study, the large eddy simulation (LES) method and a coupled level-set and volume-of-fluid (CLSVOF) method are performed to study air-core vortex formation in a benchmark reservoir with a horizontal intake pipe. The process of air-core vortex formation can be classified into an inception stage, an instability stage, and a stability stage. In the instability stage, the surface vortex repeatedly goes through the process of inception, enhancement, attenuation, and extinction. The movement of the counterrotating secondary vortices and water surface level fluctuation plays a negative role in air-core vortex formation. The additional motion generated by the counterrotating pair drives the pair to the back wall. The main vortex undergoes attenuation due to the stretching/tilting effects induced by the secondary vortex. Water level fluctuations briefly increase the submergence depth, which in turn reduces the vertical velocity gradient and vertical vorticity, destabilizing the vortex. The perturbation of the air-core vortex by water level fluctuations is present only at the beginning of the instability stage. |
doi_str_mv | 10.1080/19942060.2022.2156926 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917561474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_29eb65815f88405cb06b07ab29e5b90f</doaj_id><sourcerecordid>2917561474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-59e5bb52943ee036f5e5dc78bf4586c41413617afb74d6e08bc70aa9b14089b23</originalsourceid><addsrcrecordid>eNp9UctKBDEQHERBUT9BCHietZPJY3JTxMeCKIKCt5BkEo3MTDTJqvv3zu6qR0_dFFXVj6qqIwwzDC2cYCkpAQ4zAoTMCGZcEr5V7U24qAGap-11T-sVabc6zDkYYCAajAXdq-5vF4NLweoe5bLolih6FMZctAl9KEs0OPuix5CHCUXlxSEdUm1jcugjpuK-kI9p0CXEEb2laF3OB9WO1312hz91v3q8vHg4v65v7q7m52c3taUMl5pJx4xhRNLGOWi4Z451VrTGU9ZySzHFDcdCeyNoxx20xgrQWhpMoZWGNPvVfOPbRf2q3lIYdFqqqINaAzE9K51KsL1TRDrDWYuZb1sKzBrgBoQ2ZLWDBD95HW-8phveFy4X9RoXaZzWn7RYMI6poBOLbVg2xZyT839TMahVGOo3DLUKQ_2EMelON7owrr_1GVPfqaKXfUw-6dGGrJr_Lb4BOnOQFg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917561474</pqid></control><display><type>article</type><title>Numerical study of instability mechanism in the air-core vortex formation process</title><source>Taylor & Francis Open Access</source><creator>Kan, Kan ; Xu, Yuhang ; Li, Zhixiang ; Xu, Hui ; Chen, Huixiang ; Zi, Dan ; Gao, Qiang ; Shen, Lian</creator><creatorcontrib>Kan, Kan ; Xu, Yuhang ; Li, Zhixiang ; Xu, Hui ; Chen, Huixiang ; Zi, Dan ; Gao, Qiang ; Shen, Lian</creatorcontrib><description>Air-core vortices are a ubiquitous phenomenon in the intakes of hydropower stations. Due to the transient and instability of two-phase vorticial flow, the prediction of air-core vortex formation is challenging, and understanding of the instability mechanism remains elusive. In this study, the large eddy simulation (LES) method and a coupled level-set and volume-of-fluid (CLSVOF) method are performed to study air-core vortex formation in a benchmark reservoir with a horizontal intake pipe. The process of air-core vortex formation can be classified into an inception stage, an instability stage, and a stability stage. In the instability stage, the surface vortex repeatedly goes through the process of inception, enhancement, attenuation, and extinction. The movement of the counterrotating secondary vortices and water surface level fluctuation plays a negative role in air-core vortex formation. The additional motion generated by the counterrotating pair drives the pair to the back wall. The main vortex undergoes attenuation due to the stretching/tilting effects induced by the secondary vortex. Water level fluctuations briefly increase the submergence depth, which in turn reduces the vertical velocity gradient and vertical vorticity, destabilizing the vortex. The perturbation of the air-core vortex by water level fluctuations is present only at the beginning of the instability stage.</description><identifier>ISSN: 1994-2060</identifier><identifier>EISSN: 1997-003X</identifier><identifier>DOI: 10.1080/19942060.2022.2156926</identifier><language>eng</language><publisher>Hong Kong: Taylor & Francis</publisher><subject>Air-core vortex ; Attenuation ; counterrotating pair ; Flow stability ; Fluid flow ; Hydroelectric power stations ; Intake pipes ; Large eddy simulation ; Surface stability ; Two phase flow ; Velocity gradient ; Vortices ; Vorticity ; water level fluctuation ; Water level fluctuations ; wave</subject><ispartof>Engineering applications of computational fluid mechanics, 2023-12, Vol.17 (1)</ispartof><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023</rights><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-59e5bb52943ee036f5e5dc78bf4586c41413617afb74d6e08bc70aa9b14089b23</citedby><cites>FETCH-LOGICAL-c451t-59e5bb52943ee036f5e5dc78bf4586c41413617afb74d6e08bc70aa9b14089b23</cites><orcidid>0000-0003-4135-0640 ; 0000-0002-4260-9899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/19942060.2022.2156926$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/19942060.2022.2156926$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Kan, Kan</creatorcontrib><creatorcontrib>Xu, Yuhang</creatorcontrib><creatorcontrib>Li, Zhixiang</creatorcontrib><creatorcontrib>Xu, Hui</creatorcontrib><creatorcontrib>Chen, Huixiang</creatorcontrib><creatorcontrib>Zi, Dan</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Shen, Lian</creatorcontrib><title>Numerical study of instability mechanism in the air-core vortex formation process</title><title>Engineering applications of computational fluid mechanics</title><description>Air-core vortices are a ubiquitous phenomenon in the intakes of hydropower stations. Due to the transient and instability of two-phase vorticial flow, the prediction of air-core vortex formation is challenging, and understanding of the instability mechanism remains elusive. In this study, the large eddy simulation (LES) method and a coupled level-set and volume-of-fluid (CLSVOF) method are performed to study air-core vortex formation in a benchmark reservoir with a horizontal intake pipe. The process of air-core vortex formation can be classified into an inception stage, an instability stage, and a stability stage. In the instability stage, the surface vortex repeatedly goes through the process of inception, enhancement, attenuation, and extinction. The movement of the counterrotating secondary vortices and water surface level fluctuation plays a negative role in air-core vortex formation. The additional motion generated by the counterrotating pair drives the pair to the back wall. The main vortex undergoes attenuation due to the stretching/tilting effects induced by the secondary vortex. Water level fluctuations briefly increase the submergence depth, which in turn reduces the vertical velocity gradient and vertical vorticity, destabilizing the vortex. The perturbation of the air-core vortex by water level fluctuations is present only at the beginning of the instability stage.</description><subject>Air-core vortex</subject><subject>Attenuation</subject><subject>counterrotating pair</subject><subject>Flow stability</subject><subject>Fluid flow</subject><subject>Hydroelectric power stations</subject><subject>Intake pipes</subject><subject>Large eddy simulation</subject><subject>Surface stability</subject><subject>Two phase flow</subject><subject>Velocity gradient</subject><subject>Vortices</subject><subject>Vorticity</subject><subject>water level fluctuation</subject><subject>Water level fluctuations</subject><subject>wave</subject><issn>1994-2060</issn><issn>1997-003X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9UctKBDEQHERBUT9BCHietZPJY3JTxMeCKIKCt5BkEo3MTDTJqvv3zu6qR0_dFFXVj6qqIwwzDC2cYCkpAQ4zAoTMCGZcEr5V7U24qAGap-11T-sVabc6zDkYYCAajAXdq-5vF4NLweoe5bLolih6FMZctAl9KEs0OPuix5CHCUXlxSEdUm1jcugjpuK-kI9p0CXEEb2laF3OB9WO1312hz91v3q8vHg4v65v7q7m52c3taUMl5pJx4xhRNLGOWi4Z451VrTGU9ZySzHFDcdCeyNoxx20xgrQWhpMoZWGNPvVfOPbRf2q3lIYdFqqqINaAzE9K51KsL1TRDrDWYuZb1sKzBrgBoQ2ZLWDBD95HW-8phveFy4X9RoXaZzWn7RYMI6poBOLbVg2xZyT839TMahVGOo3DLUKQ_2EMelON7owrr_1GVPfqaKXfUw-6dGGrJr_Lb4BOnOQFg</recordid><startdate>20231231</startdate><enddate>20231231</enddate><creator>Kan, Kan</creator><creator>Xu, Yuhang</creator><creator>Li, Zhixiang</creator><creator>Xu, Hui</creator><creator>Chen, Huixiang</creator><creator>Zi, Dan</creator><creator>Gao, Qiang</creator><creator>Shen, Lian</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>KR7</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4135-0640</orcidid><orcidid>https://orcid.org/0000-0002-4260-9899</orcidid></search><sort><creationdate>20231231</creationdate><title>Numerical study of instability mechanism in the air-core vortex formation process</title><author>Kan, Kan ; Xu, Yuhang ; Li, Zhixiang ; Xu, Hui ; Chen, Huixiang ; Zi, Dan ; Gao, Qiang ; Shen, Lian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-59e5bb52943ee036f5e5dc78bf4586c41413617afb74d6e08bc70aa9b14089b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air-core vortex</topic><topic>Attenuation</topic><topic>counterrotating pair</topic><topic>Flow stability</topic><topic>Fluid flow</topic><topic>Hydroelectric power stations</topic><topic>Intake pipes</topic><topic>Large eddy simulation</topic><topic>Surface stability</topic><topic>Two phase flow</topic><topic>Velocity gradient</topic><topic>Vortices</topic><topic>Vorticity</topic><topic>water level fluctuation</topic><topic>Water level fluctuations</topic><topic>wave</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kan, Kan</creatorcontrib><creatorcontrib>Xu, Yuhang</creatorcontrib><creatorcontrib>Li, Zhixiang</creatorcontrib><creatorcontrib>Xu, Hui</creatorcontrib><creatorcontrib>Chen, Huixiang</creatorcontrib><creatorcontrib>Zi, Dan</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Shen, Lian</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Civil Engineering Abstracts</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Engineering applications of computational fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kan, Kan</au><au>Xu, Yuhang</au><au>Li, Zhixiang</au><au>Xu, Hui</au><au>Chen, Huixiang</au><au>Zi, Dan</au><au>Gao, Qiang</au><au>Shen, Lian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study of instability mechanism in the air-core vortex formation process</atitle><jtitle>Engineering applications of computational fluid mechanics</jtitle><date>2023-12-31</date><risdate>2023</risdate><volume>17</volume><issue>1</issue><issn>1994-2060</issn><eissn>1997-003X</eissn><abstract>Air-core vortices are a ubiquitous phenomenon in the intakes of hydropower stations. Due to the transient and instability of two-phase vorticial flow, the prediction of air-core vortex formation is challenging, and understanding of the instability mechanism remains elusive. In this study, the large eddy simulation (LES) method and a coupled level-set and volume-of-fluid (CLSVOF) method are performed to study air-core vortex formation in a benchmark reservoir with a horizontal intake pipe. The process of air-core vortex formation can be classified into an inception stage, an instability stage, and a stability stage. In the instability stage, the surface vortex repeatedly goes through the process of inception, enhancement, attenuation, and extinction. The movement of the counterrotating secondary vortices and water surface level fluctuation plays a negative role in air-core vortex formation. The additional motion generated by the counterrotating pair drives the pair to the back wall. The main vortex undergoes attenuation due to the stretching/tilting effects induced by the secondary vortex. Water level fluctuations briefly increase the submergence depth, which in turn reduces the vertical velocity gradient and vertical vorticity, destabilizing the vortex. The perturbation of the air-core vortex by water level fluctuations is present only at the beginning of the instability stage.</abstract><cop>Hong Kong</cop><pub>Taylor & Francis</pub><doi>10.1080/19942060.2022.2156926</doi><orcidid>https://orcid.org/0000-0003-4135-0640</orcidid><orcidid>https://orcid.org/0000-0002-4260-9899</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1994-2060 |
ispartof | Engineering applications of computational fluid mechanics, 2023-12, Vol.17 (1) |
issn | 1994-2060 1997-003X |
language | eng |
recordid | cdi_proquest_journals_2917561474 |
source | Taylor & Francis Open Access |
subjects | Air-core vortex Attenuation counterrotating pair Flow stability Fluid flow Hydroelectric power stations Intake pipes Large eddy simulation Surface stability Two phase flow Velocity gradient Vortices Vorticity water level fluctuation Water level fluctuations wave |
title | Numerical study of instability mechanism in the air-core vortex formation process |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20of%20instability%20mechanism%20in%20the%20air-core%20vortex%20formation%20process&rft.jtitle=Engineering%20applications%20of%20computational%20fluid%20mechanics&rft.au=Kan,%20Kan&rft.date=2023-12-31&rft.volume=17&rft.issue=1&rft.issn=1994-2060&rft.eissn=1997-003X&rft_id=info:doi/10.1080/19942060.2022.2156926&rft_dat=%3Cproquest_cross%3E2917561474%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-59e5bb52943ee036f5e5dc78bf4586c41413617afb74d6e08bc70aa9b14089b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2917561474&rft_id=info:pmid/&rfr_iscdi=true |