Loading…
Changes in compound drought-heat events over Brazil’s Pantanal wetland: an assessment using remote sensing data and multiple drought indicators
Brazil’s Pantanal wetland is one of the most threatened Brazilian ecosystems from direct anthropogenic pressures and climate change. In this study, the overarching research question is to explore whether compound drought-heat events (CDHEs) have become more recurrent, intense, and widespread over Br...
Saved in:
Published in: | Climate dynamics 2024, Vol.62 (1), p.739-757 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Brazil’s Pantanal wetland is one of the most threatened Brazilian ecosystems from direct anthropogenic pressures and climate change. In this study, the overarching research question is to explore whether compound drought-heat events (CDHEs) have become more recurrent, intense, and widespread over Brazil’s Pantanal wetland in recent decades. For this, we purpose and tested two different approaches using validated long-term time series of monthly precipitation, temperature, and the satellite-based Vegetation Health Index (VHI) to characterize the spatiotemporal pattern of CDHEs over Pantanal. Firstly, we assessed global gridded precipitation and temperature data sets against ground measurements to choose an appropriate dataset for this study. Then, we calculated the Standardized Precipitation Index (SPI), Standardized Temperature Index (STI), and Standardized Precipitation Evapotranspiration Index (SPEI) from 1981 to 2021. The results showed that using both approaches (CDHE-M1 and CDHE-M2), the frequency of events is higher considering the moderate category, which is expected since the criteria are less restrictive. In addition, the highest frequency of CDHE events occurs between September and November (the end of the dry season). The results also indicated that CDHE events have been more recurrent and widespread since 2000 in Pantanal. Besides, considering all methods for identifying the CDHEs, the probability density function indicates a shift pattern to warmer and drier conditions in the last 40 years. The Mann–Kendall tests also confirmed the assumption that there is a significantly increasing trend in the compound drought-heat events in the Pantanal. Developing methodologies for monitoring compound climate events is crucial for assessing climate risks in a warming climate. Besides, it is expected that our results contribute to the convincing of the urgent need for environmental protection strategies and disaster risk reduction plans for the Pantanal. |
---|---|
ISSN: | 0930-7575 1432-0894 |
DOI: | 10.1007/s00382-023-06937-x |