Loading…
On stochastic methods for surface reconstruction
In this article, we present and discuss three statistical methods for surface reconstruction. A typical input to a surface reconstruction technique consists of a large set of points that has been sampled from a smooth surface and contains uncertain data in the form of noise and outliers. We first pr...
Saved in:
Published in: | The Visual computer 2007-06, Vol.23 (6), p.381-395 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, we present and discuss three statistical methods for surface reconstruction. A typical input to a surface reconstruction technique consists of a large set of points that has been sampled from a smooth surface and contains uncertain data in the form of noise and outliers. We first present a method that filters out uncertain and redundant information yielding a more accurate and economical surface representation. Then we present two methods, each of which converts the input point data to a standard shape representation; the first produces an implicit representation while the second yields a triangle mesh. |
---|---|
ISSN: | 0178-2789 1432-2315 |
DOI: | 10.1007/s00371-006-0094-3 |