Loading…

Classification of signals by means of Genetic Programming

This paper describes a new technique for signal classification by means of Genetic Programming (GP). The novelty of this technique is that no prior knowledge of the signals is needed to extract the features. Instead of it, GP is able to extract the most relevant features needed for classification. T...

Full description

Saved in:
Bibliographic Details
Published in:Soft computing (Berlin, Germany) Germany), 2013-10, Vol.17 (10), p.1929-1937
Main Authors: Fernández-Blanco, Enrique, Rivero, Daniel, Gestal, Marcos, Dorado, Julián
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper describes a new technique for signal classification by means of Genetic Programming (GP). The novelty of this technique is that no prior knowledge of the signals is needed to extract the features. Instead of it, GP is able to extract the most relevant features needed for classification. This technique has been applied for the solution of a well-known problem: the classification of EEG signals in epileptic and healthy patients. In this problem, signals obtained from EEG recordings must be correctly classified into their corresponding class. The aim is to show that the technique described here, with the automatic extraction of features, can return better results than the classical techniques based on manual extraction of features. For this purpose, a final comparison between the results obtained with this technique and other results found in the literature with the same database can be found. This comparison shows how this technique can improve the ones found.
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-013-1036-4