Loading…

On some properties of directoids

We study some properties of directoids and their expansions by additional signature, including bounded involutive directoids and complemented directoids. Among other results, we provide a shorter proof of the direct decomposition theorem for bounded involutive directoids given in Chajda and Länger (...

Full description

Saved in:
Bibliographic Details
Published in:Soft computing (Berlin, Germany) Germany), 2015-04, Vol.19 (4), p.955-964
Main Authors: Chajda, I., Gil-Férez, J., Giuntini, R., Kolařík, M., Ledda, A., Paoli, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-8eec849c29c87701acfbeb98d0e0dc475b689b04d4526619bfc57c730300d2f03
cites cdi_FETCH-LOGICAL-c386t-8eec849c29c87701acfbeb98d0e0dc475b689b04d4526619bfc57c730300d2f03
container_end_page 964
container_issue 4
container_start_page 955
container_title Soft computing (Berlin, Germany)
container_volume 19
creator Chajda, I.
Gil-Férez, J.
Giuntini, R.
Kolařík, M.
Ledda, A.
Paoli, F.
description We study some properties of directoids and their expansions by additional signature, including bounded involutive directoids and complemented directoids. Among other results, we provide a shorter proof of the direct decomposition theorem for bounded involutive directoids given in Chajda and Länger (Directoids. An algebraic approach to ordered sets. Heldermann Verlag, Lemgo 2011 ); we present a description of central elements of complemented directoids; we show that the variety of directoids, as well as its expansions mentioned above, all have the strong amalgamation property.
doi_str_mv 10.1007/s00500-014-1504-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917905584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917905584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-8eec849c29c87701acfbeb98d0e0dc475b689b04d4526619bfc57c730300d2f03</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC5-jka5McpfgFhV70HHaTiWyxm5psD_57U1fw5Gnm8D7vDA8h1wxuGYC-KwAKgAKTlCmQVJ2QBZNCUC21Pf3ZOdWtFOfkopQtAGdaiQVpNmNT0g6bfU57zNOApUmxCUNGP6UhlEtyFruPgle_c0neHh9eV890vXl6Wd2vqRemnahB9EZaz603WgPrfOyxtyYAQvBSq741tgcZpOJty2wfvdJeCxAAgUcQS3Iz99ZHPg9YJrdNhzzWk45bpi0oZWRNsTnlcyolY3T7POy6_OUYuKMIN4twVYQ7inCqMnxmSs2O75j_mv-HvgFd2l5F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917905584</pqid></control><display><type>article</type><title>On some properties of directoids</title><source>Springer Link</source><creator>Chajda, I. ; Gil-Férez, J. ; Giuntini, R. ; Kolařík, M. ; Ledda, A. ; Paoli, F.</creator><creatorcontrib>Chajda, I. ; Gil-Férez, J. ; Giuntini, R. ; Kolařík, M. ; Ledda, A. ; Paoli, F.</creatorcontrib><description>We study some properties of directoids and their expansions by additional signature, including bounded involutive directoids and complemented directoids. Among other results, we provide a shorter proof of the direct decomposition theorem for bounded involutive directoids given in Chajda and Länger (Directoids. An algebraic approach to ordered sets. Heldermann Verlag, Lemgo 2011 ); we present a description of central elements of complemented directoids; we show that the variety of directoids, as well as its expansions mentioned above, all have the strong amalgamation property.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-014-1504-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Artificial Intelligence ; Computational Intelligence ; Control ; Engineering ; Foundations ; Mathematical Logic and Foundations ; Mechatronics ; Robotics</subject><ispartof>Soft computing (Berlin, Germany), 2015-04, Vol.19 (4), p.955-964</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-8eec849c29c87701acfbeb98d0e0dc475b689b04d4526619bfc57c730300d2f03</citedby><cites>FETCH-LOGICAL-c386t-8eec849c29c87701acfbeb98d0e0dc475b689b04d4526619bfc57c730300d2f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chajda, I.</creatorcontrib><creatorcontrib>Gil-Férez, J.</creatorcontrib><creatorcontrib>Giuntini, R.</creatorcontrib><creatorcontrib>Kolařík, M.</creatorcontrib><creatorcontrib>Ledda, A.</creatorcontrib><creatorcontrib>Paoli, F.</creatorcontrib><title>On some properties of directoids</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>We study some properties of directoids and their expansions by additional signature, including bounded involutive directoids and complemented directoids. Among other results, we provide a shorter proof of the direct decomposition theorem for bounded involutive directoids given in Chajda and Länger (Directoids. An algebraic approach to ordered sets. Heldermann Verlag, Lemgo 2011 ); we present a description of central elements of complemented directoids; we show that the variety of directoids, as well as its expansions mentioned above, all have the strong amalgamation property.</description><subject>Algebra</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Foundations</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Robotics</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC5-jka5McpfgFhV70HHaTiWyxm5psD_57U1fw5Gnm8D7vDA8h1wxuGYC-KwAKgAKTlCmQVJ2QBZNCUC21Pf3ZOdWtFOfkopQtAGdaiQVpNmNT0g6bfU57zNOApUmxCUNGP6UhlEtyFruPgle_c0neHh9eV890vXl6Wd2vqRemnahB9EZaz603WgPrfOyxtyYAQvBSq741tgcZpOJty2wfvdJeCxAAgUcQS3Iz99ZHPg9YJrdNhzzWk45bpi0oZWRNsTnlcyolY3T7POy6_OUYuKMIN4twVYQ7inCqMnxmSs2O75j_mv-HvgFd2l5F</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Chajda, I.</creator><creator>Gil-Férez, J.</creator><creator>Giuntini, R.</creator><creator>Kolařík, M.</creator><creator>Ledda, A.</creator><creator>Paoli, F.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20150401</creationdate><title>On some properties of directoids</title><author>Chajda, I. ; Gil-Férez, J. ; Giuntini, R. ; Kolařík, M. ; Ledda, A. ; Paoli, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-8eec849c29c87701acfbeb98d0e0dc475b689b04d4526619bfc57c730300d2f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Foundations</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chajda, I.</creatorcontrib><creatorcontrib>Gil-Férez, J.</creatorcontrib><creatorcontrib>Giuntini, R.</creatorcontrib><creatorcontrib>Kolařík, M.</creatorcontrib><creatorcontrib>Ledda, A.</creatorcontrib><creatorcontrib>Paoli, F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chajda, I.</au><au>Gil-Férez, J.</au><au>Giuntini, R.</au><au>Kolařík, M.</au><au>Ledda, A.</au><au>Paoli, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On some properties of directoids</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>19</volume><issue>4</issue><spage>955</spage><epage>964</epage><pages>955-964</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>We study some properties of directoids and their expansions by additional signature, including bounded involutive directoids and complemented directoids. Among other results, we provide a shorter proof of the direct decomposition theorem for bounded involutive directoids given in Chajda and Länger (Directoids. An algebraic approach to ordered sets. Heldermann Verlag, Lemgo 2011 ); we present a description of central elements of complemented directoids; we show that the variety of directoids, as well as its expansions mentioned above, all have the strong amalgamation property.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-014-1504-5</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2015-04, Vol.19 (4), p.955-964
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917905584
source Springer Link
subjects Algebra
Artificial Intelligence
Computational Intelligence
Control
Engineering
Foundations
Mathematical Logic and Foundations
Mechatronics
Robotics
title On some properties of directoids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A51%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20some%20properties%20of%20directoids&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Chajda,%20I.&rft.date=2015-04-01&rft.volume=19&rft.issue=4&rft.spage=955&rft.epage=964&rft.pages=955-964&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-014-1504-5&rft_dat=%3Cproquest_cross%3E2917905584%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-8eec849c29c87701acfbeb98d0e0dc475b689b04d4526619bfc57c730300d2f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2917905584&rft_id=info:pmid/&rfr_iscdi=true