Loading…

Is the ground state of AC60 (A = Rb, Cs) antiferromagnetic?

Electron paramagnetic resonance measurements in the metallic and the low-temperature orthorhombic phases of RbC60 and CsC60 powder samples and a RbC60 powder sample aligned by uniaxial pressure have been performed at 34 and 94 GHz. A detailed analysis of the low-temperature signal of all samples all...

Full description

Saved in:
Bibliographic Details
Published in:Applied magnetic resonance 2000-07, Vol.19 (3-4), p.525-530
Main Authors: Rahmer, J., Knorr, S., Grupp, A., Mehring, M., Renker, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electron paramagnetic resonance measurements in the metallic and the low-temperature orthorhombic phases of RbC60 and CsC60 powder samples and a RbC60 powder sample aligned by uniaxial pressure have been performed at 34 and 94 GHz. A detailed analysis of the low-temperature signal of all samples allows the assignment of several line components to paramagnetic defects, leaving one broad line component unaccounted for. Although the behavior of this component gives strong indications of magnetic correlations, we do not find typical characteristics of antiferromagnetic resonance that have been reported by other groups at higher fields. We ascribe this to a high degree of structural disorder in the samples which inhibits the development of a long-range antiferromagnetic order. Therefore, we interpret the signal behavior as being due to magnetically coupled spin clusters.
ISSN:0937-9347
1613-7507
DOI:10.1007/BF03162396