Loading…
Dynamic adaptation of the PID’s gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm
This work presents a new design to dynamically adapt the proportional, the integral and the derivative (PID) controller’s gains using three interval type-1 non-singleton type-2 fuzzy logic systems (IT2 NSFLS-1), one fuzzy system for each gain of the PID, being the first main contribution of this pro...
Saved in:
Published in: | Soft computing (Berlin, Germany) Germany), 2020, Vol.24 (1), p.17-40 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-1f903b9812a48124b26041aaafe6974b6b4c07c6432ca2233e8c52edb40908963 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-1f903b9812a48124b26041aaafe6974b6b4c07c6432ca2233e8c52edb40908963 |
container_end_page | 40 |
container_issue | 1 |
container_start_page | 17 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 24 |
creator | Méndez, Gerardo M. Montes Dorantes, P. Noradino Alcorta, M. Aracelia |
description | This work presents a new design to dynamically adapt the proportional, the integral and the derivative (PID) controller’s gains using three interval type-1 non-singleton type-2 fuzzy logic systems (IT2 NSFLS-1), one fuzzy system for each gain of the PID, being the first main contribution of this proposal. This assembly is named as hybrid IT2 NSFLS-1 PID. Each IT2 NSFLS-1 system requires two non-singleton input values each period of discrete time
k
, (1) the error
e
k
and its standard deviation
σ
e
k
, and (2) the change of error
Δ
e
k
and its standard deviation
σ
Δ
e
k
, to calculate the corresponding adjustment
Δ
KP
k
,
Δ
KI
k
, and
Δ
KD
k
for the PID controller’s gains
K
p
k
,
K
i
k
, and
K
d
k
. The second main contribution of this proposal is that the parameters of each IT2 NSFLS-1 system are tuned each period of discrete time
k
by the non-singleton backpropagation (BP) algorithm using the plant output error and its standard deviation, which are processed as non-singleton values together with its non-singleton partial derivatives with respect to each IT2 fuzzy system parameter. Then these updated gains are used by the PID controller to calculate the best control signal for the plant under control. The uncertainty and the mean value of the measurement are used to calculate the non-singleton error which is processed as (a) input and (b) as gradient vector by each of the three IT2 NSFLS-1 systems. Simulation results show that the proposed hybrid assembly presents the better performance than the next five benchmarking control systems (a) the classic Zeigler–Nichols PID controller, and (b) four hybrid assemblies using PID controller and fuzzy systems with fixed fuzzy rule bases (T1 SFLS, T1 NSFLS, IT2 SFLS, IT2 NSFLS-1). The proposed assembly produces the better performance in a shortest period of time and it maintains a stable behavior on the output of the second-order plant model subject to variations and noise. |
doi_str_mv | 10.1007/s00500-019-04360-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917912359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917912359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1f903b9812a48124b26041aaafe6974b6b4c07c6432ca2233e8c52edb40908963</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEEm3hBVhZ6trl-meS8RL1j5EqwQLW1k3mJpOS2KntaZWueA1egofiSfBMkLpjY1v2Od-58imKDwIuBED1MQKsADgIw0GrErh4VZwIrRSvdGVeH8-SV6VWb4vTGO8BpKhW6qT4fTU7HPuG4RanhKn3jvmWpR2xr5urPz9_RdZh7yJ77JFtXKLwiANL80RcMOcdj73rBkrZdryUrN0_P89s8F2GxjkmGiN72vlIbMKAI2VEZBhoSaQt2x8Qx8Qamx9T8BN2yyADYXCHRxw6H_q0G98Vb1ocIr3_t58V32-uv11-5ndfbjeXn-54o4RJXLQGVG3WQqLOi65lCVogYkulqXRd1rqBqsnfIRuUUilaNytJ21qDgbUp1VlxvnDzOA97isne-31wOdJKIyojpFqZrJKLqgk-xkCtnUI_YpitAHvoxS692NyLPfZiRTapxRSz2HUUXtD_cf0Fw4uUCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917912359</pqid></control><display><type>article</type><title>Dynamic adaptation of the PID’s gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm</title><source>Springer Link</source><creator>Méndez, Gerardo M. ; Montes Dorantes, P. Noradino ; Alcorta, M. Aracelia</creator><creatorcontrib>Méndez, Gerardo M. ; Montes Dorantes, P. Noradino ; Alcorta, M. Aracelia</creatorcontrib><description>This work presents a new design to dynamically adapt the proportional, the integral and the derivative (PID) controller’s gains using three interval type-1 non-singleton type-2 fuzzy logic systems (IT2 NSFLS-1), one fuzzy system for each gain of the PID, being the first main contribution of this proposal. This assembly is named as hybrid IT2 NSFLS-1 PID. Each IT2 NSFLS-1 system requires two non-singleton input values each period of discrete time
k
, (1) the error
e
k
and its standard deviation
σ
e
k
, and (2) the change of error
Δ
e
k
and its standard deviation
σ
Δ
e
k
, to calculate the corresponding adjustment
Δ
KP
k
,
Δ
KI
k
, and
Δ
KD
k
for the PID controller’s gains
K
p
k
,
K
i
k
, and
K
d
k
. The second main contribution of this proposal is that the parameters of each IT2 NSFLS-1 system are tuned each period of discrete time
k
by the non-singleton backpropagation (BP) algorithm using the plant output error and its standard deviation, which are processed as non-singleton values together with its non-singleton partial derivatives with respect to each IT2 fuzzy system parameter. Then these updated gains are used by the PID controller to calculate the best control signal for the plant under control. The uncertainty and the mean value of the measurement are used to calculate the non-singleton error which is processed as (a) input and (b) as gradient vector by each of the three IT2 NSFLS-1 systems. Simulation results show that the proposed hybrid assembly presents the better performance than the next five benchmarking control systems (a) the classic Zeigler–Nichols PID controller, and (b) four hybrid assemblies using PID controller and fuzzy systems with fixed fuzzy rule bases (T1 SFLS, T1 NSFLS, IT2 SFLS, IT2 NSFLS-1). The proposed assembly produces the better performance in a shortest period of time and it maintains a stable behavior on the output of the second-order plant model subject to variations and noise.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-019-04360-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Assembly ; Back propagation ; Computational Intelligence ; Control ; Controllers ; Engineering ; Errors ; Focus ; Fuzzy control ; Fuzzy logic ; Fuzzy sets ; Fuzzy systems ; Machine learning ; Mathematical Logic and Foundations ; Mechatronics ; Parameter estimation ; Parameters ; Process controls ; Proportional integral derivative ; Robotics ; Standard deviation</subject><ispartof>Soft computing (Berlin, Germany), 2020, Vol.24 (1), p.17-40</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1f903b9812a48124b26041aaafe6974b6b4c07c6432ca2233e8c52edb40908963</citedby><cites>FETCH-LOGICAL-c319t-1f903b9812a48124b26041aaafe6974b6b4c07c6432ca2233e8c52edb40908963</cites><orcidid>0000-0001-8804-9623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Méndez, Gerardo M.</creatorcontrib><creatorcontrib>Montes Dorantes, P. Noradino</creatorcontrib><creatorcontrib>Alcorta, M. Aracelia</creatorcontrib><title>Dynamic adaptation of the PID’s gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>This work presents a new design to dynamically adapt the proportional, the integral and the derivative (PID) controller’s gains using three interval type-1 non-singleton type-2 fuzzy logic systems (IT2 NSFLS-1), one fuzzy system for each gain of the PID, being the first main contribution of this proposal. This assembly is named as hybrid IT2 NSFLS-1 PID. Each IT2 NSFLS-1 system requires two non-singleton input values each period of discrete time
k
, (1) the error
e
k
and its standard deviation
σ
e
k
, and (2) the change of error
Δ
e
k
and its standard deviation
σ
Δ
e
k
, to calculate the corresponding adjustment
Δ
KP
k
,
Δ
KI
k
, and
Δ
KD
k
for the PID controller’s gains
K
p
k
,
K
i
k
, and
K
d
k
. The second main contribution of this proposal is that the parameters of each IT2 NSFLS-1 system are tuned each period of discrete time
k
by the non-singleton backpropagation (BP) algorithm using the plant output error and its standard deviation, which are processed as non-singleton values together with its non-singleton partial derivatives with respect to each IT2 fuzzy system parameter. Then these updated gains are used by the PID controller to calculate the best control signal for the plant under control. The uncertainty and the mean value of the measurement are used to calculate the non-singleton error which is processed as (a) input and (b) as gradient vector by each of the three IT2 NSFLS-1 systems. Simulation results show that the proposed hybrid assembly presents the better performance than the next five benchmarking control systems (a) the classic Zeigler–Nichols PID controller, and (b) four hybrid assemblies using PID controller and fuzzy systems with fixed fuzzy rule bases (T1 SFLS, T1 NSFLS, IT2 SFLS, IT2 NSFLS-1). The proposed assembly produces the better performance in a shortest period of time and it maintains a stable behavior on the output of the second-order plant model subject to variations and noise.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Assembly</subject><subject>Back propagation</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Controllers</subject><subject>Engineering</subject><subject>Errors</subject><subject>Focus</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Machine learning</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Process controls</subject><subject>Proportional integral derivative</subject><subject>Robotics</subject><subject>Standard deviation</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhSMEEm3hBVhZ6trl-meS8RL1j5EqwQLW1k3mJpOS2KntaZWueA1egofiSfBMkLpjY1v2Od-58imKDwIuBED1MQKsADgIw0GrErh4VZwIrRSvdGVeH8-SV6VWb4vTGO8BpKhW6qT4fTU7HPuG4RanhKn3jvmWpR2xr5urPz9_RdZh7yJ77JFtXKLwiANL80RcMOcdj73rBkrZdryUrN0_P89s8F2GxjkmGiN72vlIbMKAI2VEZBhoSaQt2x8Qx8Qamx9T8BN2yyADYXCHRxw6H_q0G98Vb1ocIr3_t58V32-uv11-5ndfbjeXn-54o4RJXLQGVG3WQqLOi65lCVogYkulqXRd1rqBqsnfIRuUUilaNytJ21qDgbUp1VlxvnDzOA97isne-31wOdJKIyojpFqZrJKLqgk-xkCtnUI_YpitAHvoxS692NyLPfZiRTapxRSz2HUUXtD_cf0Fw4uUCA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Méndez, Gerardo M.</creator><creator>Montes Dorantes, P. Noradino</creator><creator>Alcorta, M. Aracelia</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-8804-9623</orcidid></search><sort><creationdate>2020</creationdate><title>Dynamic adaptation of the PID’s gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm</title><author>Méndez, Gerardo M. ; Montes Dorantes, P. Noradino ; Alcorta, M. Aracelia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1f903b9812a48124b26041aaafe6974b6b4c07c6432ca2233e8c52edb40908963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Assembly</topic><topic>Back propagation</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Controllers</topic><topic>Engineering</topic><topic>Errors</topic><topic>Focus</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Machine learning</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Process controls</topic><topic>Proportional integral derivative</topic><topic>Robotics</topic><topic>Standard deviation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Méndez, Gerardo M.</creatorcontrib><creatorcontrib>Montes Dorantes, P. Noradino</creatorcontrib><creatorcontrib>Alcorta, M. Aracelia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Méndez, Gerardo M.</au><au>Montes Dorantes, P. Noradino</au><au>Alcorta, M. Aracelia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic adaptation of the PID’s gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2020</date><risdate>2020</risdate><volume>24</volume><issue>1</issue><spage>17</spage><epage>40</epage><pages>17-40</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>This work presents a new design to dynamically adapt the proportional, the integral and the derivative (PID) controller’s gains using three interval type-1 non-singleton type-2 fuzzy logic systems (IT2 NSFLS-1), one fuzzy system for each gain of the PID, being the first main contribution of this proposal. This assembly is named as hybrid IT2 NSFLS-1 PID. Each IT2 NSFLS-1 system requires two non-singleton input values each period of discrete time
k
, (1) the error
e
k
and its standard deviation
σ
e
k
, and (2) the change of error
Δ
e
k
and its standard deviation
σ
Δ
e
k
, to calculate the corresponding adjustment
Δ
KP
k
,
Δ
KI
k
, and
Δ
KD
k
for the PID controller’s gains
K
p
k
,
K
i
k
, and
K
d
k
. The second main contribution of this proposal is that the parameters of each IT2 NSFLS-1 system are tuned each period of discrete time
k
by the non-singleton backpropagation (BP) algorithm using the plant output error and its standard deviation, which are processed as non-singleton values together with its non-singleton partial derivatives with respect to each IT2 fuzzy system parameter. Then these updated gains are used by the PID controller to calculate the best control signal for the plant under control. The uncertainty and the mean value of the measurement are used to calculate the non-singleton error which is processed as (a) input and (b) as gradient vector by each of the three IT2 NSFLS-1 systems. Simulation results show that the proposed hybrid assembly presents the better performance than the next five benchmarking control systems (a) the classic Zeigler–Nichols PID controller, and (b) four hybrid assemblies using PID controller and fuzzy systems with fixed fuzzy rule bases (T1 SFLS, T1 NSFLS, IT2 SFLS, IT2 NSFLS-1). The proposed assembly produces the better performance in a shortest period of time and it maintains a stable behavior on the output of the second-order plant model subject to variations and noise.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-019-04360-1</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-8804-9623</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2020, Vol.24 (1), p.17-40 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2917912359 |
source | Springer Link |
subjects | Algorithms Artificial Intelligence Assembly Back propagation Computational Intelligence Control Controllers Engineering Errors Focus Fuzzy control Fuzzy logic Fuzzy sets Fuzzy systems Machine learning Mathematical Logic and Foundations Mechatronics Parameter estimation Parameters Process controls Proportional integral derivative Robotics Standard deviation |
title | Dynamic adaptation of the PID’s gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20adaptation%20of%20the%20PID%E2%80%99s%20gains%20via%20Interval%20type-1%20non-singleton%20type-2%20fuzzy%20logic%20systems%20whose%20parameters%20are%20adapted%20using%20the%20backpropagation%20learning%20algorithm&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=M%C3%A9ndez,%20Gerardo%20M.&rft.date=2020&rft.volume=24&rft.issue=1&rft.spage=17&rft.epage=40&rft.pages=17-40&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-019-04360-1&rft_dat=%3Cproquest_cross%3E2917912359%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-1f903b9812a48124b26041aaafe6974b6b4c07c6432ca2233e8c52edb40908963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2917912359&rft_id=info:pmid/&rfr_iscdi=true |