Loading…

Dynamic adaptation of the PID’s gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm

This work presents a new design to dynamically adapt the proportional, the integral and the derivative (PID) controller’s gains using three interval type-1 non-singleton type-2 fuzzy logic systems (IT2 NSFLS-1), one fuzzy system for each gain of the PID, being the first main contribution of this pro...

Full description

Saved in:
Bibliographic Details
Published in:Soft computing (Berlin, Germany) Germany), 2020, Vol.24 (1), p.17-40
Main Authors: Méndez, Gerardo M., Montes Dorantes, P. Noradino, Alcorta, M. Aracelia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-1f903b9812a48124b26041aaafe6974b6b4c07c6432ca2233e8c52edb40908963
cites cdi_FETCH-LOGICAL-c319t-1f903b9812a48124b26041aaafe6974b6b4c07c6432ca2233e8c52edb40908963
container_end_page 40
container_issue 1
container_start_page 17
container_title Soft computing (Berlin, Germany)
container_volume 24
creator Méndez, Gerardo M.
Montes Dorantes, P. Noradino
Alcorta, M. Aracelia
description This work presents a new design to dynamically adapt the proportional, the integral and the derivative (PID) controller’s gains using three interval type-1 non-singleton type-2 fuzzy logic systems (IT2 NSFLS-1), one fuzzy system for each gain of the PID, being the first main contribution of this proposal. This assembly is named as hybrid IT2 NSFLS-1 PID. Each IT2 NSFLS-1 system requires two non-singleton input values each period of discrete time k , (1) the error e k and its standard deviation σ e k , and (2) the change of error Δ e k and its standard deviation σ Δ e k , to calculate the corresponding adjustment Δ KP k , Δ KI k , and Δ KD k for the PID controller’s gains K p k , K i k , and K d k . The second main contribution of this proposal is that the parameters of each IT2 NSFLS-1 system are tuned each period of discrete time k by the non-singleton backpropagation (BP) algorithm using the plant output error and its standard deviation, which are processed as non-singleton values together with its non-singleton partial derivatives with respect to each IT2 fuzzy system parameter. Then these updated gains are used by the PID controller to calculate the best control signal for the plant under control. The uncertainty and the mean value of the measurement are used to calculate the non-singleton error which is processed as (a) input and (b) as gradient vector by each of the three IT2 NSFLS-1 systems. Simulation results show that the proposed hybrid assembly presents the better performance than the next five benchmarking control systems (a) the classic Zeigler–Nichols PID controller, and (b) four hybrid assemblies using PID controller and fuzzy systems with fixed fuzzy rule bases (T1 SFLS, T1 NSFLS, IT2 SFLS, IT2 NSFLS-1). The proposed assembly produces the better performance in a shortest period of time and it maintains a stable behavior on the output of the second-order plant model subject to variations and noise.
doi_str_mv 10.1007/s00500-019-04360-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917912359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917912359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1f903b9812a48124b26041aaafe6974b6b4c07c6432ca2233e8c52edb40908963</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEEm3hBVhZ6trl-meS8RL1j5EqwQLW1k3mJpOS2KntaZWueA1egofiSfBMkLpjY1v2Od-58imKDwIuBED1MQKsADgIw0GrErh4VZwIrRSvdGVeH8-SV6VWb4vTGO8BpKhW6qT4fTU7HPuG4RanhKn3jvmWpR2xr5urPz9_RdZh7yJ77JFtXKLwiANL80RcMOcdj73rBkrZdryUrN0_P89s8F2GxjkmGiN72vlIbMKAI2VEZBhoSaQt2x8Qx8Qamx9T8BN2yyADYXCHRxw6H_q0G98Vb1ocIr3_t58V32-uv11-5ndfbjeXn-54o4RJXLQGVG3WQqLOi65lCVogYkulqXRd1rqBqsnfIRuUUilaNytJ21qDgbUp1VlxvnDzOA97isne-31wOdJKIyojpFqZrJKLqgk-xkCtnUI_YpitAHvoxS692NyLPfZiRTapxRSz2HUUXtD_cf0Fw4uUCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917912359</pqid></control><display><type>article</type><title>Dynamic adaptation of the PID’s gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm</title><source>Springer Link</source><creator>Méndez, Gerardo M. ; Montes Dorantes, P. Noradino ; Alcorta, M. Aracelia</creator><creatorcontrib>Méndez, Gerardo M. ; Montes Dorantes, P. Noradino ; Alcorta, M. Aracelia</creatorcontrib><description>This work presents a new design to dynamically adapt the proportional, the integral and the derivative (PID) controller’s gains using three interval type-1 non-singleton type-2 fuzzy logic systems (IT2 NSFLS-1), one fuzzy system for each gain of the PID, being the first main contribution of this proposal. This assembly is named as hybrid IT2 NSFLS-1 PID. Each IT2 NSFLS-1 system requires two non-singleton input values each period of discrete time k , (1) the error e k and its standard deviation σ e k , and (2) the change of error Δ e k and its standard deviation σ Δ e k , to calculate the corresponding adjustment Δ KP k , Δ KI k , and Δ KD k for the PID controller’s gains K p k , K i k , and K d k . The second main contribution of this proposal is that the parameters of each IT2 NSFLS-1 system are tuned each period of discrete time k by the non-singleton backpropagation (BP) algorithm using the plant output error and its standard deviation, which are processed as non-singleton values together with its non-singleton partial derivatives with respect to each IT2 fuzzy system parameter. Then these updated gains are used by the PID controller to calculate the best control signal for the plant under control. The uncertainty and the mean value of the measurement are used to calculate the non-singleton error which is processed as (a) input and (b) as gradient vector by each of the three IT2 NSFLS-1 systems. Simulation results show that the proposed hybrid assembly presents the better performance than the next five benchmarking control systems (a) the classic Zeigler–Nichols PID controller, and (b) four hybrid assemblies using PID controller and fuzzy systems with fixed fuzzy rule bases (T1 SFLS, T1 NSFLS, IT2 SFLS, IT2 NSFLS-1). The proposed assembly produces the better performance in a shortest period of time and it maintains a stable behavior on the output of the second-order plant model subject to variations and noise.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-019-04360-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Assembly ; Back propagation ; Computational Intelligence ; Control ; Controllers ; Engineering ; Errors ; Focus ; Fuzzy control ; Fuzzy logic ; Fuzzy sets ; Fuzzy systems ; Machine learning ; Mathematical Logic and Foundations ; Mechatronics ; Parameter estimation ; Parameters ; Process controls ; Proportional integral derivative ; Robotics ; Standard deviation</subject><ispartof>Soft computing (Berlin, Germany), 2020, Vol.24 (1), p.17-40</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1f903b9812a48124b26041aaafe6974b6b4c07c6432ca2233e8c52edb40908963</citedby><cites>FETCH-LOGICAL-c319t-1f903b9812a48124b26041aaafe6974b6b4c07c6432ca2233e8c52edb40908963</cites><orcidid>0000-0001-8804-9623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Méndez, Gerardo M.</creatorcontrib><creatorcontrib>Montes Dorantes, P. Noradino</creatorcontrib><creatorcontrib>Alcorta, M. Aracelia</creatorcontrib><title>Dynamic adaptation of the PID’s gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>This work presents a new design to dynamically adapt the proportional, the integral and the derivative (PID) controller’s gains using three interval type-1 non-singleton type-2 fuzzy logic systems (IT2 NSFLS-1), one fuzzy system for each gain of the PID, being the first main contribution of this proposal. This assembly is named as hybrid IT2 NSFLS-1 PID. Each IT2 NSFLS-1 system requires two non-singleton input values each period of discrete time k , (1) the error e k and its standard deviation σ e k , and (2) the change of error Δ e k and its standard deviation σ Δ e k , to calculate the corresponding adjustment Δ KP k , Δ KI k , and Δ KD k for the PID controller’s gains K p k , K i k , and K d k . The second main contribution of this proposal is that the parameters of each IT2 NSFLS-1 system are tuned each period of discrete time k by the non-singleton backpropagation (BP) algorithm using the plant output error and its standard deviation, which are processed as non-singleton values together with its non-singleton partial derivatives with respect to each IT2 fuzzy system parameter. Then these updated gains are used by the PID controller to calculate the best control signal for the plant under control. The uncertainty and the mean value of the measurement are used to calculate the non-singleton error which is processed as (a) input and (b) as gradient vector by each of the three IT2 NSFLS-1 systems. Simulation results show that the proposed hybrid assembly presents the better performance than the next five benchmarking control systems (a) the classic Zeigler–Nichols PID controller, and (b) four hybrid assemblies using PID controller and fuzzy systems with fixed fuzzy rule bases (T1 SFLS, T1 NSFLS, IT2 SFLS, IT2 NSFLS-1). The proposed assembly produces the better performance in a shortest period of time and it maintains a stable behavior on the output of the second-order plant model subject to variations and noise.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Assembly</subject><subject>Back propagation</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Controllers</subject><subject>Engineering</subject><subject>Errors</subject><subject>Focus</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Machine learning</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Process controls</subject><subject>Proportional integral derivative</subject><subject>Robotics</subject><subject>Standard deviation</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhSMEEm3hBVhZ6trl-meS8RL1j5EqwQLW1k3mJpOS2KntaZWueA1egofiSfBMkLpjY1v2Od-58imKDwIuBED1MQKsADgIw0GrErh4VZwIrRSvdGVeH8-SV6VWb4vTGO8BpKhW6qT4fTU7HPuG4RanhKn3jvmWpR2xr5urPz9_RdZh7yJ77JFtXKLwiANL80RcMOcdj73rBkrZdryUrN0_P89s8F2GxjkmGiN72vlIbMKAI2VEZBhoSaQt2x8Qx8Qamx9T8BN2yyADYXCHRxw6H_q0G98Vb1ocIr3_t58V32-uv11-5ndfbjeXn-54o4RJXLQGVG3WQqLOi65lCVogYkulqXRd1rqBqsnfIRuUUilaNytJ21qDgbUp1VlxvnDzOA97isne-31wOdJKIyojpFqZrJKLqgk-xkCtnUI_YpitAHvoxS692NyLPfZiRTapxRSz2HUUXtD_cf0Fw4uUCA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Méndez, Gerardo M.</creator><creator>Montes Dorantes, P. Noradino</creator><creator>Alcorta, M. Aracelia</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-8804-9623</orcidid></search><sort><creationdate>2020</creationdate><title>Dynamic adaptation of the PID’s gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm</title><author>Méndez, Gerardo M. ; Montes Dorantes, P. Noradino ; Alcorta, M. Aracelia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1f903b9812a48124b26041aaafe6974b6b4c07c6432ca2233e8c52edb40908963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Assembly</topic><topic>Back propagation</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Controllers</topic><topic>Engineering</topic><topic>Errors</topic><topic>Focus</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Machine learning</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Process controls</topic><topic>Proportional integral derivative</topic><topic>Robotics</topic><topic>Standard deviation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Méndez, Gerardo M.</creatorcontrib><creatorcontrib>Montes Dorantes, P. Noradino</creatorcontrib><creatorcontrib>Alcorta, M. Aracelia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Méndez, Gerardo M.</au><au>Montes Dorantes, P. Noradino</au><au>Alcorta, M. Aracelia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic adaptation of the PID’s gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2020</date><risdate>2020</risdate><volume>24</volume><issue>1</issue><spage>17</spage><epage>40</epage><pages>17-40</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>This work presents a new design to dynamically adapt the proportional, the integral and the derivative (PID) controller’s gains using three interval type-1 non-singleton type-2 fuzzy logic systems (IT2 NSFLS-1), one fuzzy system for each gain of the PID, being the first main contribution of this proposal. This assembly is named as hybrid IT2 NSFLS-1 PID. Each IT2 NSFLS-1 system requires two non-singleton input values each period of discrete time k , (1) the error e k and its standard deviation σ e k , and (2) the change of error Δ e k and its standard deviation σ Δ e k , to calculate the corresponding adjustment Δ KP k , Δ KI k , and Δ KD k for the PID controller’s gains K p k , K i k , and K d k . The second main contribution of this proposal is that the parameters of each IT2 NSFLS-1 system are tuned each period of discrete time k by the non-singleton backpropagation (BP) algorithm using the plant output error and its standard deviation, which are processed as non-singleton values together with its non-singleton partial derivatives with respect to each IT2 fuzzy system parameter. Then these updated gains are used by the PID controller to calculate the best control signal for the plant under control. The uncertainty and the mean value of the measurement are used to calculate the non-singleton error which is processed as (a) input and (b) as gradient vector by each of the three IT2 NSFLS-1 systems. Simulation results show that the proposed hybrid assembly presents the better performance than the next five benchmarking control systems (a) the classic Zeigler–Nichols PID controller, and (b) four hybrid assemblies using PID controller and fuzzy systems with fixed fuzzy rule bases (T1 SFLS, T1 NSFLS, IT2 SFLS, IT2 NSFLS-1). The proposed assembly produces the better performance in a shortest period of time and it maintains a stable behavior on the output of the second-order plant model subject to variations and noise.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-019-04360-1</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-8804-9623</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2020, Vol.24 (1), p.17-40
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2917912359
source Springer Link
subjects Algorithms
Artificial Intelligence
Assembly
Back propagation
Computational Intelligence
Control
Controllers
Engineering
Errors
Focus
Fuzzy control
Fuzzy logic
Fuzzy sets
Fuzzy systems
Machine learning
Mathematical Logic and Foundations
Mechatronics
Parameter estimation
Parameters
Process controls
Proportional integral derivative
Robotics
Standard deviation
title Dynamic adaptation of the PID’s gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20adaptation%20of%20the%20PID%E2%80%99s%20gains%20via%20Interval%20type-1%20non-singleton%20type-2%20fuzzy%20logic%20systems%20whose%20parameters%20are%20adapted%20using%20the%20backpropagation%20learning%20algorithm&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=M%C3%A9ndez,%20Gerardo%20M.&rft.date=2020&rft.volume=24&rft.issue=1&rft.spage=17&rft.epage=40&rft.pages=17-40&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-019-04360-1&rft_dat=%3Cproquest_cross%3E2917912359%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-1f903b9812a48124b26041aaafe6974b6b4c07c6432ca2233e8c52edb40908963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2917912359&rft_id=info:pmid/&rfr_iscdi=true