Loading…
Hardening against adversarial examples with the smooth gradient method
Commonly used methods in deep learning do not utilise transformations of the residual gradient available at the inputs to update the representation in the dataset. It has been shown that this residual gradient, which can be interpreted as the first-order gradient of the input sensitivity at a partic...
Saved in:
Published in: | Soft computing (Berlin, Germany) Germany), 2018-05, Vol.22 (10), p.3203-3213 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-a99ee0d0a708e2486918bfc51902341bdea67b5d03a2e2d9f41358697401fdb73 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-a99ee0d0a708e2486918bfc51902341bdea67b5d03a2e2d9f41358697401fdb73 |
container_end_page | 3213 |
container_issue | 10 |
container_start_page | 3203 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 22 |
creator | Mosca, Alan Magoulas, George D. |
description | Commonly used methods in deep learning do not utilise transformations of the residual gradient available at the inputs to update the representation in the dataset. It has been shown that this residual gradient, which can be interpreted as the first-order gradient of the input sensitivity at a particular point, may be used to improve generalisation in feed-forward neural networks, including fully connected and convolutional layers. We explore how these input gradients are related to input perturbations used to generate
adversarial examples
and how the networks that are trained with this technique are more robust to attacks generated with the fast gradient sign method. |
doi_str_mv | 10.1007/s00500-017-2998-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917933234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917933234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a99ee0d0a708e2486918bfc51902341bdea67b5d03a2e2d9f41358697401fdb73</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssTaMH4njJaooRarEBtaWE0_SVE1SbJfH35MSJFas5i7OvSMdQq453HIAfRcBMgAGXDNhTMHUCZlxJSXTSpvTnyyYzpU8JxcxbgEE15mckeXKBY992zfUNa7tY6LOv2OILrRuR_HTdfsdRvrRpg1NG6SxG4YxNsH5FvtEO0ybwV-Ss9rtIl793jl5XT68LFZs_fz4tLhfs0ryPDFnDCJ4cBoKFKrIDS_Kusq4ASEVLz26XJeZB-kECm9qxWU2UloBr32p5ZzcTLv7MLwdMCa7HQ6hH19aYbg2Uo47I8UnqgpDjAFruw9t58KX5WCPuuyky4667FGXPXbE1Ikj2zcY_pb_L30DDHtswA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917933234</pqid></control><display><type>article</type><title>Hardening against adversarial examples with the smooth gradient method</title><source>Springer Link</source><creator>Mosca, Alan ; Magoulas, George D.</creator><creatorcontrib>Mosca, Alan ; Magoulas, George D.</creatorcontrib><description>Commonly used methods in deep learning do not utilise transformations of the residual gradient available at the inputs to update the representation in the dataset. It has been shown that this residual gradient, which can be interpreted as the first-order gradient of the input sensitivity at a particular point, may be used to improve generalisation in feed-forward neural networks, including fully connected and convolutional layers. We explore how these input gradients are related to input perturbations used to generate
adversarial examples
and how the networks that are trained with this technique are more robust to attacks generated with the fast gradient sign method.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-017-2998-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Back propagation ; Computational Intelligence ; Control ; Deep learning ; Engineering ; Focus ; Mathematical Logic and Foundations ; Mechatronics ; Neural networks ; Propagation ; Robotics</subject><ispartof>Soft computing (Berlin, Germany), 2018-05, Vol.22 (10), p.3203-3213</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a99ee0d0a708e2486918bfc51902341bdea67b5d03a2e2d9f41358697401fdb73</citedby><cites>FETCH-LOGICAL-c316t-a99ee0d0a708e2486918bfc51902341bdea67b5d03a2e2d9f41358697401fdb73</cites><orcidid>0000-0001-8918-2389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mosca, Alan</creatorcontrib><creatorcontrib>Magoulas, George D.</creatorcontrib><title>Hardening against adversarial examples with the smooth gradient method</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Commonly used methods in deep learning do not utilise transformations of the residual gradient available at the inputs to update the representation in the dataset. It has been shown that this residual gradient, which can be interpreted as the first-order gradient of the input sensitivity at a particular point, may be used to improve generalisation in feed-forward neural networks, including fully connected and convolutional layers. We explore how these input gradients are related to input perturbations used to generate
adversarial examples
and how the networks that are trained with this technique are more robust to attacks generated with the fast gradient sign method.</description><subject>Artificial Intelligence</subject><subject>Back propagation</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Focus</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Propagation</subject><subject>Robotics</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssTaMH4njJaooRarEBtaWE0_SVE1SbJfH35MSJFas5i7OvSMdQq453HIAfRcBMgAGXDNhTMHUCZlxJSXTSpvTnyyYzpU8JxcxbgEE15mckeXKBY992zfUNa7tY6LOv2OILrRuR_HTdfsdRvrRpg1NG6SxG4YxNsH5FvtEO0ybwV-Ss9rtIl793jl5XT68LFZs_fz4tLhfs0ryPDFnDCJ4cBoKFKrIDS_Kusq4ASEVLz26XJeZB-kECm9qxWU2UloBr32p5ZzcTLv7MLwdMCa7HQ6hH19aYbg2Uo47I8UnqgpDjAFruw9t58KX5WCPuuyky4667FGXPXbE1Ikj2zcY_pb_L30DDHtswA</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Mosca, Alan</creator><creator>Magoulas, George D.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-8918-2389</orcidid></search><sort><creationdate>20180501</creationdate><title>Hardening against adversarial examples with the smooth gradient method</title><author>Mosca, Alan ; Magoulas, George D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a99ee0d0a708e2486918bfc51902341bdea67b5d03a2e2d9f41358697401fdb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Back propagation</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Focus</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Propagation</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mosca, Alan</creatorcontrib><creatorcontrib>Magoulas, George D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mosca, Alan</au><au>Magoulas, George D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardening against adversarial examples with the smooth gradient method</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>22</volume><issue>10</issue><spage>3203</spage><epage>3213</epage><pages>3203-3213</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Commonly used methods in deep learning do not utilise transformations of the residual gradient available at the inputs to update the representation in the dataset. It has been shown that this residual gradient, which can be interpreted as the first-order gradient of the input sensitivity at a particular point, may be used to improve generalisation in feed-forward neural networks, including fully connected and convolutional layers. We explore how these input gradients are related to input perturbations used to generate
adversarial examples
and how the networks that are trained with this technique are more robust to attacks generated with the fast gradient sign method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-017-2998-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8918-2389</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2018-05, Vol.22 (10), p.3203-3213 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2917933234 |
source | Springer Link |
subjects | Artificial Intelligence Back propagation Computational Intelligence Control Deep learning Engineering Focus Mathematical Logic and Foundations Mechatronics Neural networks Propagation Robotics |
title | Hardening against adversarial examples with the smooth gradient method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardening%20against%20adversarial%20examples%20with%20the%20smooth%20gradient%20method&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Mosca,%20Alan&rft.date=2018-05-01&rft.volume=22&rft.issue=10&rft.spage=3203&rft.epage=3213&rft.pages=3203-3213&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-017-2998-4&rft_dat=%3Cproquest_cross%3E2917933234%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-a99ee0d0a708e2486918bfc51902341bdea67b5d03a2e2d9f41358697401fdb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2917933234&rft_id=info:pmid/&rfr_iscdi=true |