Loading…
Comparative gelation of acrylic acid and acrylamide in diacrylate and dimethacrylate crosslinked matrices
The radiation-induced gelation of two monomers, acrylic acid and acrylamide, crosslinked using four model compounds was investigated using Fourier transform mechanical spectroscopy. The gel point characteristics of the resulting hydrogels were compared. The gelation characteristics of the two monome...
Saved in:
Published in: | Polymer bulletin (Berlin, Germany) Germany), 2021-02, Vol.78 (2), p.1001-1020 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-a26a13167d5c8b10088de3bf69f240b5047e82d189ac22d77280083e5c0a251c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-a26a13167d5c8b10088de3bf69f240b5047e82d189ac22d77280083e5c0a251c3 |
container_end_page | 1020 |
container_issue | 2 |
container_start_page | 1001 |
container_title | Polymer bulletin (Berlin, Germany) |
container_volume | 78 |
creator | Magami, Saminu M. |
description | The radiation-induced gelation of two monomers, acrylic acid and acrylamide, crosslinked using four model compounds was investigated using Fourier transform mechanical spectroscopy. The gel point characteristics of the resulting hydrogels were compared. The gelation characteristics of the two monomers were very similar. The fractal dimensions of the critical gels ranged between 1.77 and 1.82 when the reactions were controlled. The patterns of viscoelastic events of the products at the gel point were also similar, with the matching reactivity of the monomers and the comparable molecular weight of the crosslinkable species, providing a foundation for such events. All of the reactions exhibited low mutation numbers, indicating that the samples tested were quasi-stable during the measurements. The extent of the UV irradiance during crosslinking reactions is an important parameter in the gelation process, with an increase in UV irradiance decreasing the gel times, decreasing the network relaxation exponents (increased fractal dimensions), leading to stiffer critical gels. The evolution of
δ
with
G*
, undertaken as van Gurp–Palmen plots, shows that in the fully formed gels, however, the monomer choice and the crosslinker variation can dictate the viscoelasticity of the materials. In particular, the potential for greater steric effects/greater stabilities of the radical active centres of the dimethacrylate species, in comparison with the diacrylate species, resulting in lesser viscoelasticities in the fully formed gels.
Graphic abstract |
doi_str_mv | 10.1007/s00289-020-03147-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917957140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917957140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-a26a13167d5c8b10088de3bf69f240b5047e82d189ac22d77280083e5c0a251c3</originalsourceid><addsrcrecordid>eNp9UMlOwzAQtRBIlMIPcIrE2TC2Ey9HVLFJlbjA2XJsp7hkKXaK2r_HNAhunGZ7783MQ-iSwDUBEDcJgEqFgQIGRkqBd0doRkrGMS1LdYxmQEQeSaZO0VlKa8g152SGwmLoNiaaMXz6YuXbnAx9MTSFsXHfBptjcIXp3dQwXXC-CH3hwlSP_jB0ofPj22_LxiGlNvTv3hWdGWOwPp2jk8a0yV_8xDl6vb97WTzi5fPD0-J2iS2r-IgN5YYwwoWrrKzzc1I6z-qGq4aWUFdQCi-pI1IZS6kTgsqMYb6yYGhFLJujq0l3E4ePrU-jXg_b2OeVmioiVCVICRlFJ9Th1OgbvYmhM3GvCehvS_Vkqc6W6oOlepdJbCKlDO5XPv5J_8P6Ak5oetM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917957140</pqid></control><display><type>article</type><title>Comparative gelation of acrylic acid and acrylamide in diacrylate and dimethacrylate crosslinked matrices</title><source>Springer Link</source><creator>Magami, Saminu M.</creator><creatorcontrib>Magami, Saminu M.</creatorcontrib><description>The radiation-induced gelation of two monomers, acrylic acid and acrylamide, crosslinked using four model compounds was investigated using Fourier transform mechanical spectroscopy. The gel point characteristics of the resulting hydrogels were compared. The gelation characteristics of the two monomers were very similar. The fractal dimensions of the critical gels ranged between 1.77 and 1.82 when the reactions were controlled. The patterns of viscoelastic events of the products at the gel point were also similar, with the matching reactivity of the monomers and the comparable molecular weight of the crosslinkable species, providing a foundation for such events. All of the reactions exhibited low mutation numbers, indicating that the samples tested were quasi-stable during the measurements. The extent of the UV irradiance during crosslinking reactions is an important parameter in the gelation process, with an increase in UV irradiance decreasing the gel times, decreasing the network relaxation exponents (increased fractal dimensions), leading to stiffer critical gels. The evolution of
δ
with
G*
, undertaken as van Gurp–Palmen plots, shows that in the fully formed gels, however, the monomer choice and the crosslinker variation can dictate the viscoelasticity of the materials. In particular, the potential for greater steric effects/greater stabilities of the radical active centres of the dimethacrylate species, in comparison with the diacrylate species, resulting in lesser viscoelasticities in the fully formed gels.
Graphic abstract</description><identifier>ISSN: 0170-0839</identifier><identifier>EISSN: 1436-2449</identifier><identifier>DOI: 10.1007/s00289-020-03147-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acids ; Acrylamide ; Acrylic acid ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Fourier transforms ; Fractal geometry ; Free radicals ; Gelation ; Hydrogels ; Irradiance ; Molecular weight ; Monomers ; Mutation ; Organic Chemistry ; Original Paper ; Phase transitions ; Physical Chemistry ; Polymer Sciences ; Radiation crosslinking ; Radiation effects ; Rheology ; Soft and Granular Matter ; Spectrum analysis ; Steric effects ; Ultraviolet radiation ; Viscoelasticity</subject><ispartof>Polymer bulletin (Berlin, Germany), 2021-02, Vol.78 (2), p.1001-1020</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-a26a13167d5c8b10088de3bf69f240b5047e82d189ac22d77280083e5c0a251c3</citedby><cites>FETCH-LOGICAL-c356t-a26a13167d5c8b10088de3bf69f240b5047e82d189ac22d77280083e5c0a251c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Magami, Saminu M.</creatorcontrib><title>Comparative gelation of acrylic acid and acrylamide in diacrylate and dimethacrylate crosslinked matrices</title><title>Polymer bulletin (Berlin, Germany)</title><addtitle>Polym. Bull</addtitle><description>The radiation-induced gelation of two monomers, acrylic acid and acrylamide, crosslinked using four model compounds was investigated using Fourier transform mechanical spectroscopy. The gel point characteristics of the resulting hydrogels were compared. The gelation characteristics of the two monomers were very similar. The fractal dimensions of the critical gels ranged between 1.77 and 1.82 when the reactions were controlled. The patterns of viscoelastic events of the products at the gel point were also similar, with the matching reactivity of the monomers and the comparable molecular weight of the crosslinkable species, providing a foundation for such events. All of the reactions exhibited low mutation numbers, indicating that the samples tested were quasi-stable during the measurements. The extent of the UV irradiance during crosslinking reactions is an important parameter in the gelation process, with an increase in UV irradiance decreasing the gel times, decreasing the network relaxation exponents (increased fractal dimensions), leading to stiffer critical gels. The evolution of
δ
with
G*
, undertaken as van Gurp–Palmen plots, shows that in the fully formed gels, however, the monomer choice and the crosslinker variation can dictate the viscoelasticity of the materials. In particular, the potential for greater steric effects/greater stabilities of the radical active centres of the dimethacrylate species, in comparison with the diacrylate species, resulting in lesser viscoelasticities in the fully formed gels.
Graphic abstract</description><subject>Acids</subject><subject>Acrylamide</subject><subject>Acrylic acid</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Fourier transforms</subject><subject>Fractal geometry</subject><subject>Free radicals</subject><subject>Gelation</subject><subject>Hydrogels</subject><subject>Irradiance</subject><subject>Molecular weight</subject><subject>Monomers</subject><subject>Mutation</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Phase transitions</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Radiation crosslinking</subject><subject>Radiation effects</subject><subject>Rheology</subject><subject>Soft and Granular Matter</subject><subject>Spectrum analysis</subject><subject>Steric effects</subject><subject>Ultraviolet radiation</subject><subject>Viscoelasticity</subject><issn>0170-0839</issn><issn>1436-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMlOwzAQtRBIlMIPcIrE2TC2Ey9HVLFJlbjA2XJsp7hkKXaK2r_HNAhunGZ7783MQ-iSwDUBEDcJgEqFgQIGRkqBd0doRkrGMS1LdYxmQEQeSaZO0VlKa8g152SGwmLoNiaaMXz6YuXbnAx9MTSFsXHfBptjcIXp3dQwXXC-CH3hwlSP_jB0ofPj22_LxiGlNvTv3hWdGWOwPp2jk8a0yV_8xDl6vb97WTzi5fPD0-J2iS2r-IgN5YYwwoWrrKzzc1I6z-qGq4aWUFdQCi-pI1IZS6kTgsqMYb6yYGhFLJujq0l3E4ePrU-jXg_b2OeVmioiVCVICRlFJ9Th1OgbvYmhM3GvCehvS_Vkqc6W6oOlepdJbCKlDO5XPv5J_8P6Ak5oetM</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Magami, Saminu M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210201</creationdate><title>Comparative gelation of acrylic acid and acrylamide in diacrylate and dimethacrylate crosslinked matrices</title><author>Magami, Saminu M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-a26a13167d5c8b10088de3bf69f240b5047e82d189ac22d77280083e5c0a251c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acids</topic><topic>Acrylamide</topic><topic>Acrylic acid</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Fourier transforms</topic><topic>Fractal geometry</topic><topic>Free radicals</topic><topic>Gelation</topic><topic>Hydrogels</topic><topic>Irradiance</topic><topic>Molecular weight</topic><topic>Monomers</topic><topic>Mutation</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Phase transitions</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Radiation crosslinking</topic><topic>Radiation effects</topic><topic>Rheology</topic><topic>Soft and Granular Matter</topic><topic>Spectrum analysis</topic><topic>Steric effects</topic><topic>Ultraviolet radiation</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magami, Saminu M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Polymer bulletin (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magami, Saminu M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative gelation of acrylic acid and acrylamide in diacrylate and dimethacrylate crosslinked matrices</atitle><jtitle>Polymer bulletin (Berlin, Germany)</jtitle><stitle>Polym. Bull</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>78</volume><issue>2</issue><spage>1001</spage><epage>1020</epage><pages>1001-1020</pages><issn>0170-0839</issn><eissn>1436-2449</eissn><abstract>The radiation-induced gelation of two monomers, acrylic acid and acrylamide, crosslinked using four model compounds was investigated using Fourier transform mechanical spectroscopy. The gel point characteristics of the resulting hydrogels were compared. The gelation characteristics of the two monomers were very similar. The fractal dimensions of the critical gels ranged between 1.77 and 1.82 when the reactions were controlled. The patterns of viscoelastic events of the products at the gel point were also similar, with the matching reactivity of the monomers and the comparable molecular weight of the crosslinkable species, providing a foundation for such events. All of the reactions exhibited low mutation numbers, indicating that the samples tested were quasi-stable during the measurements. The extent of the UV irradiance during crosslinking reactions is an important parameter in the gelation process, with an increase in UV irradiance decreasing the gel times, decreasing the network relaxation exponents (increased fractal dimensions), leading to stiffer critical gels. The evolution of
δ
with
G*
, undertaken as van Gurp–Palmen plots, shows that in the fully formed gels, however, the monomer choice and the crosslinker variation can dictate the viscoelasticity of the materials. In particular, the potential for greater steric effects/greater stabilities of the radical active centres of the dimethacrylate species, in comparison with the diacrylate species, resulting in lesser viscoelasticities in the fully formed gels.
Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00289-020-03147-x</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-0839 |
ispartof | Polymer bulletin (Berlin, Germany), 2021-02, Vol.78 (2), p.1001-1020 |
issn | 0170-0839 1436-2449 |
language | eng |
recordid | cdi_proquest_journals_2917957140 |
source | Springer Link |
subjects | Acids Acrylamide Acrylic acid Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Complex Fluids and Microfluidics Fourier transforms Fractal geometry Free radicals Gelation Hydrogels Irradiance Molecular weight Monomers Mutation Organic Chemistry Original Paper Phase transitions Physical Chemistry Polymer Sciences Radiation crosslinking Radiation effects Rheology Soft and Granular Matter Spectrum analysis Steric effects Ultraviolet radiation Viscoelasticity |
title | Comparative gelation of acrylic acid and acrylamide in diacrylate and dimethacrylate crosslinked matrices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20gelation%20of%20acrylic%20acid%20and%20acrylamide%20in%20diacrylate%20and%20dimethacrylate%20crosslinked%20matrices&rft.jtitle=Polymer%20bulletin%20(Berlin,%20Germany)&rft.au=Magami,%20Saminu%20M.&rft.date=2021-02-01&rft.volume=78&rft.issue=2&rft.spage=1001&rft.epage=1020&rft.pages=1001-1020&rft.issn=0170-0839&rft.eissn=1436-2449&rft_id=info:doi/10.1007/s00289-020-03147-x&rft_dat=%3Cproquest_cross%3E2917957140%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-a26a13167d5c8b10088de3bf69f240b5047e82d189ac22d77280083e5c0a251c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2917957140&rft_id=info:pmid/&rfr_iscdi=true |