Loading…
RETRACTED ARTICLE: Semantic segmentation-based skin cancer detection
Melanoma detection requires dermoscopy image segmentation, one of the medical image segmentation domains. Melanoma, the most dangerous form of skin cancer, can strike without warning on healthy skin or grow from a pre-existing lesion. Skin lesion border segmentation is required to find lesion locati...
Saved in:
Published in: | Soft computing (Berlin, Germany) Germany), 2023-08, Vol.27 (16), p.11895-11903 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1153-b5531015314ab03fa5a6f1f5b17f310305d7f13944e3fbaa4da5e4ce1ec9a36f3 |
container_end_page | 11903 |
container_issue | 16 |
container_start_page | 11895 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 27 |
creator | Renuka, N. |
description | Melanoma detection requires dermoscopy image segmentation, one of the medical image segmentation domains. Melanoma, the most dangerous form of skin cancer, can strike without warning on healthy skin or grow from a pre-existing lesion. Skin lesion border segmentation is required to find lesion locations in histopathologic imaging effectively. True, accurate skin lesion segmentation remains challenging due to blurring boundaries, necessitating an accurate and automated skin lesion segmentation approach. Semantic segmentation using deep learning architecture has been effectively employed in this paper for the desired task. The segmentation of the skin lesson is performed using u-net-based deep learning model and analyzed using standard and valid evaluation metrics. The simulation is carried out on the available dataset and implemented on the Python Collab® tool. |
doi_str_mv | 10.1007/s00500-023-08557-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917963592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917963592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1153-b5531015314ab03fa5a6f1f5b17f310305d7f13944e3fbaa4da5e4ce1ec9a36f3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKeA59XZzG7WeCtp_YCCUON52WxmS6pN6m568N-bNoI3T_PC-zHwMHYt4FYA6LsIoAA4pMjhXinN8YRNhETkWur89KhTrjOJ5-wixg1AKrTCCZuvFuVqVpSLeTJblS_FcvGQvNHWtn3jkkjrLbW97Zuu5ZWNVCfxo2kTZ1tHIampJ3fwLtmZt5-Rrn7vlL0_LsrimS9fn16K2ZI7IRTySikUMCghbQXorbKZF15VQvvBQFC19gJzKQl9Za2srSLpSJDLLWYep-xm3N2F7mtPsTebbh_a4aVJc6HzDFWeDql0TLnQxRjIm11otjZ8GwHmQMuMtMxAyxxpGRxKOJbiEG7XFP6m_2n9AJ0Bark</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917963592</pqid></control><display><type>article</type><title>RETRACTED ARTICLE: Semantic segmentation-based skin cancer detection</title><source>Springer Nature</source><creator>Renuka, N.</creator><creatorcontrib>Renuka, N.</creatorcontrib><description>Melanoma detection requires dermoscopy image segmentation, one of the medical image segmentation domains. Melanoma, the most dangerous form of skin cancer, can strike without warning on healthy skin or grow from a pre-existing lesion. Skin lesion border segmentation is required to find lesion locations in histopathologic imaging effectively. True, accurate skin lesion segmentation remains challenging due to blurring boundaries, necessitating an accurate and automated skin lesion segmentation approach. Semantic segmentation using deep learning architecture has been effectively employed in this paper for the desired task. The segmentation of the skin lesson is performed using u-net-based deep learning model and analyzed using standard and valid evaluation metrics. The simulation is carried out on the available dataset and implemented on the Python Collab® tool.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-023-08557-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Blurring ; Cancer ; Cell division ; Computational Intelligence ; Control ; Datasets ; Deep learning ; Engineering ; Focus ; Image segmentation ; Lesions ; Mathematical Logic and Foundations ; Mechatronics ; Medical imaging ; Robotics ; Semantic segmentation ; Skin cancer</subject><ispartof>Soft computing (Berlin, Germany), 2023-08, Vol.27 (16), p.11895-11903</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1153-b5531015314ab03fa5a6f1f5b17f310305d7f13944e3fbaa4da5e4ce1ec9a36f3</cites><orcidid>0000-0002-5709-236X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Renuka, N.</creatorcontrib><title>RETRACTED ARTICLE: Semantic segmentation-based skin cancer detection</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Melanoma detection requires dermoscopy image segmentation, one of the medical image segmentation domains. Melanoma, the most dangerous form of skin cancer, can strike without warning on healthy skin or grow from a pre-existing lesion. Skin lesion border segmentation is required to find lesion locations in histopathologic imaging effectively. True, accurate skin lesion segmentation remains challenging due to blurring boundaries, necessitating an accurate and automated skin lesion segmentation approach. Semantic segmentation using deep learning architecture has been effectively employed in this paper for the desired task. The segmentation of the skin lesson is performed using u-net-based deep learning model and analyzed using standard and valid evaluation metrics. The simulation is carried out on the available dataset and implemented on the Python Collab® tool.</description><subject>Artificial Intelligence</subject><subject>Blurring</subject><subject>Cancer</subject><subject>Cell division</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Focus</subject><subject>Image segmentation</subject><subject>Lesions</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Medical imaging</subject><subject>Robotics</subject><subject>Semantic segmentation</subject><subject>Skin cancer</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKeA59XZzG7WeCtp_YCCUON52WxmS6pN6m568N-bNoI3T_PC-zHwMHYt4FYA6LsIoAA4pMjhXinN8YRNhETkWur89KhTrjOJ5-wixg1AKrTCCZuvFuVqVpSLeTJblS_FcvGQvNHWtn3jkkjrLbW97Zuu5ZWNVCfxo2kTZ1tHIampJ3fwLtmZt5-Rrn7vlL0_LsrimS9fn16K2ZI7IRTySikUMCghbQXorbKZF15VQvvBQFC19gJzKQl9Za2srSLpSJDLLWYep-xm3N2F7mtPsTebbh_a4aVJc6HzDFWeDql0TLnQxRjIm11otjZ8GwHmQMuMtMxAyxxpGRxKOJbiEG7XFP6m_2n9AJ0Bark</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Renuka, N.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5709-236X</orcidid></search><sort><creationdate>20230801</creationdate><title>RETRACTED ARTICLE: Semantic segmentation-based skin cancer detection</title><author>Renuka, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1153-b5531015314ab03fa5a6f1f5b17f310305d7f13944e3fbaa4da5e4ce1ec9a36f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Blurring</topic><topic>Cancer</topic><topic>Cell division</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Focus</topic><topic>Image segmentation</topic><topic>Lesions</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Medical imaging</topic><topic>Robotics</topic><topic>Semantic segmentation</topic><topic>Skin cancer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renuka, N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renuka, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RETRACTED ARTICLE: Semantic segmentation-based skin cancer detection</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>27</volume><issue>16</issue><spage>11895</spage><epage>11903</epage><pages>11895-11903</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Melanoma detection requires dermoscopy image segmentation, one of the medical image segmentation domains. Melanoma, the most dangerous form of skin cancer, can strike without warning on healthy skin or grow from a pre-existing lesion. Skin lesion border segmentation is required to find lesion locations in histopathologic imaging effectively. True, accurate skin lesion segmentation remains challenging due to blurring boundaries, necessitating an accurate and automated skin lesion segmentation approach. Semantic segmentation using deep learning architecture has been effectively employed in this paper for the desired task. The segmentation of the skin lesson is performed using u-net-based deep learning model and analyzed using standard and valid evaluation metrics. The simulation is carried out on the available dataset and implemented on the Python Collab® tool.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-023-08557-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5709-236X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2023-08, Vol.27 (16), p.11895-11903 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2917963592 |
source | Springer Nature |
subjects | Artificial Intelligence Blurring Cancer Cell division Computational Intelligence Control Datasets Deep learning Engineering Focus Image segmentation Lesions Mathematical Logic and Foundations Mechatronics Medical imaging Robotics Semantic segmentation Skin cancer |
title | RETRACTED ARTICLE: Semantic segmentation-based skin cancer detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RETRACTED%20ARTICLE:%20Semantic%20segmentation-based%20skin%20cancer%20detection&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Renuka,%20N.&rft.date=2023-08-01&rft.volume=27&rft.issue=16&rft.spage=11895&rft.epage=11903&rft.pages=11895-11903&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-023-08557-3&rft_dat=%3Cproquest_cross%3E2917963592%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1153-b5531015314ab03fa5a6f1f5b17f310305d7f13944e3fbaa4da5e4ce1ec9a36f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2917963592&rft_id=info:pmid/&rfr_iscdi=true |