Loading…
An approach to parameters estimation of a chromatography model using a clustering genetic algorithm based inverse model
Genetic algorithms are tools for searching in complex spaces and they have been used successfully in the system identification solution that is an inverse problem. Chromatography models are represented by systems of partial differential equations with non-linear parameters which are, in general, dif...
Saved in:
Published in: | Soft computing (Berlin, Germany) Germany), 2011-05, Vol.15 (5), p.963-973 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Genetic algorithms are tools for searching in complex spaces and they have been used successfully in the system identification solution that is an inverse problem. Chromatography models are represented by systems of partial differential equations with non-linear parameters which are, in general, difficult to estimate many times. In this work a genetic algorithm is used to solve the inverse problem of parameters estimation in a model of protein adsorption by batch chromatography process. Each population individual represents a supposed condition to the direct solution of the partial differential equation system, so the computation of the fitness can be time consuming if the population is large. To avoid this difficulty, the implemented genetic algorithm divides the population into clusters, whose representatives are evaluated, while the fitness of the remaining individuals is calculated in function of their distances from the representatives. Simulation and practical studies illustrate the computational time saving of the proposed genetic algorithm and show that it is an effective solution method for this type of application. |
---|---|
ISSN: | 1432-7643 1433-7479 |
DOI: | 10.1007/s00500-010-0638-3 |