Loading…
Electrospinning of polyvinylalcohol–polycaprolactone composite scaffolds for tissue engineering applications
Random nanofibrous composite scaffolds of PVA/PCL bilayer were fabricated by electrospinning method. The bilayer nanofibrous scaffolds were subjected to detailed structural, morphological, chemical, and thermal analysis using XRD, SEM, FTIR, and DSC. Morphological investigations revealed that the pr...
Saved in:
Published in: | Polymer bulletin (Berlin, Germany) Germany), 2013-11, Vol.70 (11), p.2995-3010 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Random nanofibrous composite scaffolds of PVA/PCL bilayer were fabricated by electrospinning method. The bilayer nanofibrous scaffolds were subjected to detailed structural, morphological, chemical, and thermal analysis using XRD, SEM, FTIR, and DSC. Morphological investigations revealed that the prepared nanofibers have uniform morphology and the average fiber diameters for bilayer samples A, B, and C are 203, 252, and 244 nm, respectively. The obtained scaffolds have a porous structure with porosity of 77, 89.2, and 78.3 % for bilayer samples A, B, and C, respectively. FTIR analysis ensured complete evaporation of solvent and formation of non-interactive bilayers. Biocompatibility of the membranes was investigated by studying the adhesion of mouse NIH 3T3 fibroblasts for 72 h, and its enhanced adhesion and proliferation proved its mettle as a potential scaffold for tissue engineering applications. |
---|---|
ISSN: | 0170-0839 1436-2449 |
DOI: | 10.1007/s00289-013-1002-4 |