Loading…
Differential Evolution algorithm for contingency analysis-based optimal location of FACTS controllers in deregulated electricity market
In this paper, a novel heuristic optimization algorithm called differential evolution (DE) technique has been proposed to solve the optimal location of FACTS devices in deregulated electricity market using contingency analysis. The proposed approach deals with the optimal injection of real and react...
Saved in:
Published in: | Soft computing (Berlin, Germany) Germany), 2019-01, Vol.23 (1), p.163-179 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-dd1169f6cdcc0fd36c9d8d6fd20e16e6f0603e34383aea79f822b55b43fa01673 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-dd1169f6cdcc0fd36c9d8d6fd20e16e6f0603e34383aea79f822b55b43fa01673 |
container_end_page | 179 |
container_issue | 1 |
container_start_page | 163 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 23 |
creator | Balamurugan, K. Muthukumar, K. |
description | In this paper, a novel heuristic optimization algorithm called differential evolution (DE) technique has been proposed to solve the optimal location of FACTS devices in deregulated electricity market using contingency analysis. The proposed approach deals with the optimal injection of real and reactive power using FACTS devices with an aim to minimize the total system cost, the total number of overloads, excess power flow, the severity of overload and real power loss of the network. To enhance the search behavior of the DE approach, the scaling factor and crossover parameters are empirically selected. To show the superiority of the proposed DE approach and as a step ahead to prove its novelty, the same optimization problem is solved using evolutionary programming method, and the results are compared. The results indicate the proposed DE algorithm is superior in terms of final solution quality, efficiency, convergence rate and robustness. A sample four-bus system and 24-bus EHV southern region of Indian grid system has been considered to illustrate the proposed methodology. |
doi_str_mv | 10.1007/s00500-018-3141-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918030940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918030940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-dd1169f6cdcc0fd36c9d8d6fd20e16e6f0603e34383aea79f822b55b43fa01673</originalsourceid><addsrcrecordid>eNp1kM9KAzEQhxdRsFYfwFvAc3Sy2WZ3j6W2KhQ8WM8hzZ-amm5qkor7BL62aSt48jQD8_tmmK8orgncEoD6LgKMADCQBlNSEfx1UgxIRSmuq7o9PfQlrllFz4uLGNcAJalHdFB831tjdNBdssKh6ad3u2R9h4Rb-WDT2wYZH5D0ed6tdCd7JDrh-mgjXoqoFfLbZDcZdV6KA-kNmo0ni5cDFLxzOkRkO6TyldXOiZQh7bRMwUqberQR4V2ny-LMCBf11W8dFq-z6WLyiOfPD0-T8RxLSljCShHCWsOkkhKMoky2qlHMqBI0YZoZYEA1rWhDhRZ1a5qyXI5Gy4oaAYTVdFjcHPdug__Y6Zj42u9CfinysiUNUGgryClyTMngYwza8G3IX4aeE-B73_zom2fffO-bf2WmPDIxZ7Or8Lf5f-gHGcyG5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918030940</pqid></control><display><type>article</type><title>Differential Evolution algorithm for contingency analysis-based optimal location of FACTS controllers in deregulated electricity market</title><source>Springer Nature</source><creator>Balamurugan, K. ; Muthukumar, K.</creator><creatorcontrib>Balamurugan, K. ; Muthukumar, K.</creatorcontrib><description>In this paper, a novel heuristic optimization algorithm called differential evolution (DE) technique has been proposed to solve the optimal location of FACTS devices in deregulated electricity market using contingency analysis. The proposed approach deals with the optimal injection of real and reactive power using FACTS devices with an aim to minimize the total system cost, the total number of overloads, excess power flow, the severity of overload and real power loss of the network. To enhance the search behavior of the DE approach, the scaling factor and crossover parameters are empirically selected. To show the superiority of the proposed DE approach and as a step ahead to prove its novelty, the same optimization problem is solved using evolutionary programming method, and the results are compared. The results indicate the proposed DE algorithm is superior in terms of final solution quality, efficiency, convergence rate and robustness. A sample four-bus system and 24-bus EHV southern region of Indian grid system has been considered to illustrate the proposed methodology.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-018-3141-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Buses ; Computational Intelligence ; Contingency ; Control ; Deregulation ; Electricity ; Engineering ; Evolutionary algorithms ; Evolutionary computation ; Genetic algorithms ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Optimization ; Overloading ; Power flow ; Power supply ; Reactive power ; Robotics ; Scaling factors ; Suppliers</subject><ispartof>Soft computing (Berlin, Germany), 2019-01, Vol.23 (1), p.163-179</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-dd1169f6cdcc0fd36c9d8d6fd20e16e6f0603e34383aea79f822b55b43fa01673</citedby><cites>FETCH-LOGICAL-c316t-dd1169f6cdcc0fd36c9d8d6fd20e16e6f0603e34383aea79f822b55b43fa01673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Balamurugan, K.</creatorcontrib><creatorcontrib>Muthukumar, K.</creatorcontrib><title>Differential Evolution algorithm for contingency analysis-based optimal location of FACTS controllers in deregulated electricity market</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>In this paper, a novel heuristic optimization algorithm called differential evolution (DE) technique has been proposed to solve the optimal location of FACTS devices in deregulated electricity market using contingency analysis. The proposed approach deals with the optimal injection of real and reactive power using FACTS devices with an aim to minimize the total system cost, the total number of overloads, excess power flow, the severity of overload and real power loss of the network. To enhance the search behavior of the DE approach, the scaling factor and crossover parameters are empirically selected. To show the superiority of the proposed DE approach and as a step ahead to prove its novelty, the same optimization problem is solved using evolutionary programming method, and the results are compared. The results indicate the proposed DE algorithm is superior in terms of final solution quality, efficiency, convergence rate and robustness. A sample four-bus system and 24-bus EHV southern region of Indian grid system has been considered to illustrate the proposed methodology.</description><subject>Artificial Intelligence</subject><subject>Buses</subject><subject>Computational Intelligence</subject><subject>Contingency</subject><subject>Control</subject><subject>Deregulation</subject><subject>Electricity</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Genetic algorithms</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Optimization</subject><subject>Overloading</subject><subject>Power flow</subject><subject>Power supply</subject><subject>Reactive power</subject><subject>Robotics</subject><subject>Scaling factors</subject><subject>Suppliers</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KAzEQhxdRsFYfwFvAc3Sy2WZ3j6W2KhQ8WM8hzZ-amm5qkor7BL62aSt48jQD8_tmmK8orgncEoD6LgKMADCQBlNSEfx1UgxIRSmuq7o9PfQlrllFz4uLGNcAJalHdFB831tjdNBdssKh6ad3u2R9h4Rb-WDT2wYZH5D0ed6tdCd7JDrh-mgjXoqoFfLbZDcZdV6KA-kNmo0ni5cDFLxzOkRkO6TyldXOiZQh7bRMwUqberQR4V2ny-LMCBf11W8dFq-z6WLyiOfPD0-T8RxLSljCShHCWsOkkhKMoky2qlHMqBI0YZoZYEA1rWhDhRZ1a5qyXI5Gy4oaAYTVdFjcHPdug__Y6Zj42u9CfinysiUNUGgryClyTMngYwza8G3IX4aeE-B73_zom2fffO-bf2WmPDIxZ7Or8Lf5f-gHGcyG5A</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Balamurugan, K.</creator><creator>Muthukumar, K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190101</creationdate><title>Differential Evolution algorithm for contingency analysis-based optimal location of FACTS controllers in deregulated electricity market</title><author>Balamurugan, K. ; Muthukumar, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-dd1169f6cdcc0fd36c9d8d6fd20e16e6f0603e34383aea79f822b55b43fa01673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Buses</topic><topic>Computational Intelligence</topic><topic>Contingency</topic><topic>Control</topic><topic>Deregulation</topic><topic>Electricity</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Genetic algorithms</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Optimization</topic><topic>Overloading</topic><topic>Power flow</topic><topic>Power supply</topic><topic>Reactive power</topic><topic>Robotics</topic><topic>Scaling factors</topic><topic>Suppliers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balamurugan, K.</creatorcontrib><creatorcontrib>Muthukumar, K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balamurugan, K.</au><au>Muthukumar, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential Evolution algorithm for contingency analysis-based optimal location of FACTS controllers in deregulated electricity market</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>23</volume><issue>1</issue><spage>163</spage><epage>179</epage><pages>163-179</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>In this paper, a novel heuristic optimization algorithm called differential evolution (DE) technique has been proposed to solve the optimal location of FACTS devices in deregulated electricity market using contingency analysis. The proposed approach deals with the optimal injection of real and reactive power using FACTS devices with an aim to minimize the total system cost, the total number of overloads, excess power flow, the severity of overload and real power loss of the network. To enhance the search behavior of the DE approach, the scaling factor and crossover parameters are empirically selected. To show the superiority of the proposed DE approach and as a step ahead to prove its novelty, the same optimization problem is solved using evolutionary programming method, and the results are compared. The results indicate the proposed DE algorithm is superior in terms of final solution quality, efficiency, convergence rate and robustness. A sample four-bus system and 24-bus EHV southern region of Indian grid system has been considered to illustrate the proposed methodology.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-018-3141-x</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2019-01, Vol.23 (1), p.163-179 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2918030940 |
source | Springer Nature |
subjects | Artificial Intelligence Buses Computational Intelligence Contingency Control Deregulation Electricity Engineering Evolutionary algorithms Evolutionary computation Genetic algorithms Mathematical Logic and Foundations Mechatronics Methodologies and Application Optimization Overloading Power flow Power supply Reactive power Robotics Scaling factors Suppliers |
title | Differential Evolution algorithm for contingency analysis-based optimal location of FACTS controllers in deregulated electricity market |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A11%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20Evolution%20algorithm%20for%20contingency%20analysis-based%20optimal%20location%20of%20FACTS%20controllers%20in%20deregulated%20electricity%20market&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Balamurugan,%20K.&rft.date=2019-01-01&rft.volume=23&rft.issue=1&rft.spage=163&rft.epage=179&rft.pages=163-179&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-018-3141-x&rft_dat=%3Cproquest_cross%3E2918030940%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-dd1169f6cdcc0fd36c9d8d6fd20e16e6f0603e34383aea79f822b55b43fa01673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918030940&rft_id=info:pmid/&rfr_iscdi=true |