Loading…

Differential Evolution algorithm for contingency analysis-based optimal location of FACTS controllers in deregulated electricity market

In this paper, a novel heuristic optimization algorithm called differential evolution (DE) technique has been proposed to solve the optimal location of FACTS devices in deregulated electricity market using contingency analysis. The proposed approach deals with the optimal injection of real and react...

Full description

Saved in:
Bibliographic Details
Published in:Soft computing (Berlin, Germany) Germany), 2019-01, Vol.23 (1), p.163-179
Main Authors: Balamurugan, K., Muthukumar, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-dd1169f6cdcc0fd36c9d8d6fd20e16e6f0603e34383aea79f822b55b43fa01673
cites cdi_FETCH-LOGICAL-c316t-dd1169f6cdcc0fd36c9d8d6fd20e16e6f0603e34383aea79f822b55b43fa01673
container_end_page 179
container_issue 1
container_start_page 163
container_title Soft computing (Berlin, Germany)
container_volume 23
creator Balamurugan, K.
Muthukumar, K.
description In this paper, a novel heuristic optimization algorithm called differential evolution (DE) technique has been proposed to solve the optimal location of FACTS devices in deregulated electricity market using contingency analysis. The proposed approach deals with the optimal injection of real and reactive power using FACTS devices with an aim to minimize the total system cost, the total number of overloads, excess power flow, the severity of overload and real power loss of the network. To enhance the search behavior of the DE approach, the scaling factor and crossover parameters are empirically selected. To show the superiority of the proposed DE approach and as a step ahead to prove its novelty, the same optimization problem is solved using evolutionary programming method, and the results are compared. The results indicate the proposed DE algorithm is superior in terms of final solution quality, efficiency, convergence rate and robustness. A sample four-bus system and 24-bus EHV southern region of Indian grid system has been considered to illustrate the proposed methodology.
doi_str_mv 10.1007/s00500-018-3141-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918030940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918030940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-dd1169f6cdcc0fd36c9d8d6fd20e16e6f0603e34383aea79f822b55b43fa01673</originalsourceid><addsrcrecordid>eNp1kM9KAzEQhxdRsFYfwFvAc3Sy2WZ3j6W2KhQ8WM8hzZ-amm5qkor7BL62aSt48jQD8_tmmK8orgncEoD6LgKMADCQBlNSEfx1UgxIRSmuq7o9PfQlrllFz4uLGNcAJalHdFB831tjdNBdssKh6ad3u2R9h4Rb-WDT2wYZH5D0ed6tdCd7JDrh-mgjXoqoFfLbZDcZdV6KA-kNmo0ni5cDFLxzOkRkO6TyldXOiZQh7bRMwUqberQR4V2ny-LMCBf11W8dFq-z6WLyiOfPD0-T8RxLSljCShHCWsOkkhKMoky2qlHMqBI0YZoZYEA1rWhDhRZ1a5qyXI5Gy4oaAYTVdFjcHPdug__Y6Zj42u9CfinysiUNUGgryClyTMngYwza8G3IX4aeE-B73_zom2fffO-bf2WmPDIxZ7Or8Lf5f-gHGcyG5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918030940</pqid></control><display><type>article</type><title>Differential Evolution algorithm for contingency analysis-based optimal location of FACTS controllers in deregulated electricity market</title><source>Springer Nature</source><creator>Balamurugan, K. ; Muthukumar, K.</creator><creatorcontrib>Balamurugan, K. ; Muthukumar, K.</creatorcontrib><description>In this paper, a novel heuristic optimization algorithm called differential evolution (DE) technique has been proposed to solve the optimal location of FACTS devices in deregulated electricity market using contingency analysis. The proposed approach deals with the optimal injection of real and reactive power using FACTS devices with an aim to minimize the total system cost, the total number of overloads, excess power flow, the severity of overload and real power loss of the network. To enhance the search behavior of the DE approach, the scaling factor and crossover parameters are empirically selected. To show the superiority of the proposed DE approach and as a step ahead to prove its novelty, the same optimization problem is solved using evolutionary programming method, and the results are compared. The results indicate the proposed DE algorithm is superior in terms of final solution quality, efficiency, convergence rate and robustness. A sample four-bus system and 24-bus EHV southern region of Indian grid system has been considered to illustrate the proposed methodology.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-018-3141-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Buses ; Computational Intelligence ; Contingency ; Control ; Deregulation ; Electricity ; Engineering ; Evolutionary algorithms ; Evolutionary computation ; Genetic algorithms ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Optimization ; Overloading ; Power flow ; Power supply ; Reactive power ; Robotics ; Scaling factors ; Suppliers</subject><ispartof>Soft computing (Berlin, Germany), 2019-01, Vol.23 (1), p.163-179</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-dd1169f6cdcc0fd36c9d8d6fd20e16e6f0603e34383aea79f822b55b43fa01673</citedby><cites>FETCH-LOGICAL-c316t-dd1169f6cdcc0fd36c9d8d6fd20e16e6f0603e34383aea79f822b55b43fa01673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Balamurugan, K.</creatorcontrib><creatorcontrib>Muthukumar, K.</creatorcontrib><title>Differential Evolution algorithm for contingency analysis-based optimal location of FACTS controllers in deregulated electricity market</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>In this paper, a novel heuristic optimization algorithm called differential evolution (DE) technique has been proposed to solve the optimal location of FACTS devices in deregulated electricity market using contingency analysis. The proposed approach deals with the optimal injection of real and reactive power using FACTS devices with an aim to minimize the total system cost, the total number of overloads, excess power flow, the severity of overload and real power loss of the network. To enhance the search behavior of the DE approach, the scaling factor and crossover parameters are empirically selected. To show the superiority of the proposed DE approach and as a step ahead to prove its novelty, the same optimization problem is solved using evolutionary programming method, and the results are compared. The results indicate the proposed DE algorithm is superior in terms of final solution quality, efficiency, convergence rate and robustness. A sample four-bus system and 24-bus EHV southern region of Indian grid system has been considered to illustrate the proposed methodology.</description><subject>Artificial Intelligence</subject><subject>Buses</subject><subject>Computational Intelligence</subject><subject>Contingency</subject><subject>Control</subject><subject>Deregulation</subject><subject>Electricity</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Genetic algorithms</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Optimization</subject><subject>Overloading</subject><subject>Power flow</subject><subject>Power supply</subject><subject>Reactive power</subject><subject>Robotics</subject><subject>Scaling factors</subject><subject>Suppliers</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KAzEQhxdRsFYfwFvAc3Sy2WZ3j6W2KhQ8WM8hzZ-amm5qkor7BL62aSt48jQD8_tmmK8orgncEoD6LgKMADCQBlNSEfx1UgxIRSmuq7o9PfQlrllFz4uLGNcAJalHdFB831tjdNBdssKh6ad3u2R9h4Rb-WDT2wYZH5D0ed6tdCd7JDrh-mgjXoqoFfLbZDcZdV6KA-kNmo0ni5cDFLxzOkRkO6TyldXOiZQh7bRMwUqberQR4V2ny-LMCBf11W8dFq-z6WLyiOfPD0-T8RxLSljCShHCWsOkkhKMoky2qlHMqBI0YZoZYEA1rWhDhRZ1a5qyXI5Gy4oaAYTVdFjcHPdug__Y6Zj42u9CfinysiUNUGgryClyTMngYwza8G3IX4aeE-B73_zom2fffO-bf2WmPDIxZ7Or8Lf5f-gHGcyG5A</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Balamurugan, K.</creator><creator>Muthukumar, K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190101</creationdate><title>Differential Evolution algorithm for contingency analysis-based optimal location of FACTS controllers in deregulated electricity market</title><author>Balamurugan, K. ; Muthukumar, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-dd1169f6cdcc0fd36c9d8d6fd20e16e6f0603e34383aea79f822b55b43fa01673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Buses</topic><topic>Computational Intelligence</topic><topic>Contingency</topic><topic>Control</topic><topic>Deregulation</topic><topic>Electricity</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Genetic algorithms</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Optimization</topic><topic>Overloading</topic><topic>Power flow</topic><topic>Power supply</topic><topic>Reactive power</topic><topic>Robotics</topic><topic>Scaling factors</topic><topic>Suppliers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balamurugan, K.</creatorcontrib><creatorcontrib>Muthukumar, K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balamurugan, K.</au><au>Muthukumar, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential Evolution algorithm for contingency analysis-based optimal location of FACTS controllers in deregulated electricity market</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>23</volume><issue>1</issue><spage>163</spage><epage>179</epage><pages>163-179</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>In this paper, a novel heuristic optimization algorithm called differential evolution (DE) technique has been proposed to solve the optimal location of FACTS devices in deregulated electricity market using contingency analysis. The proposed approach deals with the optimal injection of real and reactive power using FACTS devices with an aim to minimize the total system cost, the total number of overloads, excess power flow, the severity of overload and real power loss of the network. To enhance the search behavior of the DE approach, the scaling factor and crossover parameters are empirically selected. To show the superiority of the proposed DE approach and as a step ahead to prove its novelty, the same optimization problem is solved using evolutionary programming method, and the results are compared. The results indicate the proposed DE algorithm is superior in terms of final solution quality, efficiency, convergence rate and robustness. A sample four-bus system and 24-bus EHV southern region of Indian grid system has been considered to illustrate the proposed methodology.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-018-3141-x</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2019-01, Vol.23 (1), p.163-179
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2918030940
source Springer Nature
subjects Artificial Intelligence
Buses
Computational Intelligence
Contingency
Control
Deregulation
Electricity
Engineering
Evolutionary algorithms
Evolutionary computation
Genetic algorithms
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Optimization
Overloading
Power flow
Power supply
Reactive power
Robotics
Scaling factors
Suppliers
title Differential Evolution algorithm for contingency analysis-based optimal location of FACTS controllers in deregulated electricity market
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A11%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20Evolution%20algorithm%20for%20contingency%20analysis-based%20optimal%20location%20of%20FACTS%20controllers%20in%20deregulated%20electricity%20market&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Balamurugan,%20K.&rft.date=2019-01-01&rft.volume=23&rft.issue=1&rft.spage=163&rft.epage=179&rft.pages=163-179&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-018-3141-x&rft_dat=%3Cproquest_cross%3E2918030940%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-dd1169f6cdcc0fd36c9d8d6fd20e16e6f0603e34383aea79f822b55b43fa01673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918030940&rft_id=info:pmid/&rfr_iscdi=true