Loading…

Model uncertainty quantification for diagnosis of each main coronary artery stenosis

One of the main causes of death in the world is coronary artery disease (CAD). CAD occurs when there is stenosis in one or more of the three major coronary arteries: right coronary artery (RCA), left circumflex (LCX) artery, and left anterior descending (LAD) artery. The gold standard or CAD diagnos...

Full description

Saved in:
Bibliographic Details
Published in:Soft computing (Berlin, Germany) Germany), 2020-07, Vol.24 (13), p.10149-10160
Main Authors: Alizadehsani, Roohallah, Roshanzamir, Mohamad, Abdar, Moloud, Beykikhoshk, Adham, Zangooei, Mohammad Hossein, Khosravi, Abbas, Nahavandi, Saeid, Tan, Ru San, Acharya, U. Rajendra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-9c478593d6af3c7e9632aecbb81a1eb9c170bfcf1e092ccd91f4cc5f7b8f48733
cites cdi_FETCH-LOGICAL-c319t-9c478593d6af3c7e9632aecbb81a1eb9c170bfcf1e092ccd91f4cc5f7b8f48733
container_end_page 10160
container_issue 13
container_start_page 10149
container_title Soft computing (Berlin, Germany)
container_volume 24
creator Alizadehsani, Roohallah
Roshanzamir, Mohamad
Abdar, Moloud
Beykikhoshk, Adham
Zangooei, Mohammad Hossein
Khosravi, Abbas
Nahavandi, Saeid
Tan, Ru San
Acharya, U. Rajendra
description One of the main causes of death in the world is coronary artery disease (CAD). CAD occurs when there is stenosis in one or more of the three major coronary arteries: right coronary artery (RCA), left circumflex (LCX) artery, and left anterior descending (LAD) artery. The gold standard or CAD diagnosis is angiography, but it is invasive, costly, and time consuming. Therefore, researchers continually seek new machine learning methods that can screen for CAD non-invasively. For reliable and cost-effective CAD diagnosis, several algorithms have been developed. Most prior studies analyzed the presence or absence of CAD in a dichotomous manner. Herein, we studied the more complex problem of classification of stenosis in individual LAD, LCX, and RCA by applying machine learning algorithms on the Z-Alizadeh Sani dataset that comprised 303 subjects, each with 54 features. In addition, our new methodology is developed to handle model uncertainty in the prediction of individual artery stenosis. It uses the hyperplane distance from a sample and accuracy rate of the classifier during the training phase to enhance its performance. Our results demonstrate high diagnostic performance of the proposed method for diagnosis of stenosis in individual RCA, LCX, and LAD, achieving accuracy rates of 82.67%, 83.67% and 86.43%, respectively. This is the best performance of ML techniques applied to the Z-Alizadeh Sani dataset.
doi_str_mv 10.1007/s00500-019-04531-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918032620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918032620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9c478593d6af3c7e9632aecbb81a1eb9c170bfcf1e092ccd91f4cc5f7b8f48733</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhonRxFr9A55IPKMD7C7L0TR-JTVe6pmwLNRtWmiBPfTfi10Tb55mDs_7zuRB6JbCPQUQDwmgBiBAJYGq5pTAGZrRinMiKiHPTzsjoqn4JbpKaQPAqKj5DK3eQ2-3ePTGxqwHn4_4MGqfBzcYnYfgsQsR94Ne-5CGhIPDVpsvvCssNiEGr-MR65htGSnbE3WNLpzeJnvzO-fo8_lptXgly4-Xt8XjkhhOZSbSVKKtJe8b7bgRVjacaWu6rqWa2k4aKqBzxlELkhnTS-oqY2onutZVreB8ju6m3n0Mh9GmrDZhjL6cVEzSFjhrGBSKTZSJIaVondrHYVfeVhTUjz012VPFnjrZUz8hPoVSgf3axr_qf1Lfv8R0Ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918032620</pqid></control><display><type>article</type><title>Model uncertainty quantification for diagnosis of each main coronary artery stenosis</title><source>Springer Link</source><creator>Alizadehsani, Roohallah ; Roshanzamir, Mohamad ; Abdar, Moloud ; Beykikhoshk, Adham ; Zangooei, Mohammad Hossein ; Khosravi, Abbas ; Nahavandi, Saeid ; Tan, Ru San ; Acharya, U. Rajendra</creator><creatorcontrib>Alizadehsani, Roohallah ; Roshanzamir, Mohamad ; Abdar, Moloud ; Beykikhoshk, Adham ; Zangooei, Mohammad Hossein ; Khosravi, Abbas ; Nahavandi, Saeid ; Tan, Ru San ; Acharya, U. Rajendra</creatorcontrib><description>One of the main causes of death in the world is coronary artery disease (CAD). CAD occurs when there is stenosis in one or more of the three major coronary arteries: right coronary artery (RCA), left circumflex (LCX) artery, and left anterior descending (LAD) artery. The gold standard or CAD diagnosis is angiography, but it is invasive, costly, and time consuming. Therefore, researchers continually seek new machine learning methods that can screen for CAD non-invasively. For reliable and cost-effective CAD diagnosis, several algorithms have been developed. Most prior studies analyzed the presence or absence of CAD in a dichotomous manner. Herein, we studied the more complex problem of classification of stenosis in individual LAD, LCX, and RCA by applying machine learning algorithms on the Z-Alizadeh Sani dataset that comprised 303 subjects, each with 54 features. In addition, our new methodology is developed to handle model uncertainty in the prediction of individual artery stenosis. It uses the hyperplane distance from a sample and accuracy rate of the classifier during the training phase to enhance its performance. Our results demonstrate high diagnostic performance of the proposed method for diagnosis of stenosis in individual RCA, LCX, and LAD, achieving accuracy rates of 82.67%, 83.67% and 86.43%, respectively. This is the best performance of ML techniques applied to the Z-Alizadeh Sani dataset.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-019-04531-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Angiography ; Artificial Intelligence ; Cardiovascular disease ; Classification ; Computational Intelligence ; Control ; Coronary artery disease ; Coronary vessels ; Data mining ; Datasets ; Decision trees ; Diagnosis ; Discriminant analysis ; Electrocardiography ; Engineering ; Feature selection ; Genetic algorithms ; Hyperplanes ; Machine learning ; Mathematical Logic and Foundations ; Mechatronics ; Medical imaging ; Methodologies and Application ; Methods ; Neural networks ; Principal components analysis ; Robotics ; Support vector machines ; Uncertainty ; Wavelet transforms</subject><ispartof>Soft computing (Berlin, Germany), 2020-07, Vol.24 (13), p.10149-10160</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9c478593d6af3c7e9632aecbb81a1eb9c170bfcf1e092ccd91f4cc5f7b8f48733</citedby><cites>FETCH-LOGICAL-c319t-9c478593d6af3c7e9632aecbb81a1eb9c170bfcf1e092ccd91f4cc5f7b8f48733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Alizadehsani, Roohallah</creatorcontrib><creatorcontrib>Roshanzamir, Mohamad</creatorcontrib><creatorcontrib>Abdar, Moloud</creatorcontrib><creatorcontrib>Beykikhoshk, Adham</creatorcontrib><creatorcontrib>Zangooei, Mohammad Hossein</creatorcontrib><creatorcontrib>Khosravi, Abbas</creatorcontrib><creatorcontrib>Nahavandi, Saeid</creatorcontrib><creatorcontrib>Tan, Ru San</creatorcontrib><creatorcontrib>Acharya, U. Rajendra</creatorcontrib><title>Model uncertainty quantification for diagnosis of each main coronary artery stenosis</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>One of the main causes of death in the world is coronary artery disease (CAD). CAD occurs when there is stenosis in one or more of the three major coronary arteries: right coronary artery (RCA), left circumflex (LCX) artery, and left anterior descending (LAD) artery. The gold standard or CAD diagnosis is angiography, but it is invasive, costly, and time consuming. Therefore, researchers continually seek new machine learning methods that can screen for CAD non-invasively. For reliable and cost-effective CAD diagnosis, several algorithms have been developed. Most prior studies analyzed the presence or absence of CAD in a dichotomous manner. Herein, we studied the more complex problem of classification of stenosis in individual LAD, LCX, and RCA by applying machine learning algorithms on the Z-Alizadeh Sani dataset that comprised 303 subjects, each with 54 features. In addition, our new methodology is developed to handle model uncertainty in the prediction of individual artery stenosis. It uses the hyperplane distance from a sample and accuracy rate of the classifier during the training phase to enhance its performance. Our results demonstrate high diagnostic performance of the proposed method for diagnosis of stenosis in individual RCA, LCX, and LAD, achieving accuracy rates of 82.67%, 83.67% and 86.43%, respectively. This is the best performance of ML techniques applied to the Z-Alizadeh Sani dataset.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Angiography</subject><subject>Artificial Intelligence</subject><subject>Cardiovascular disease</subject><subject>Classification</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Coronary artery disease</subject><subject>Coronary vessels</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Diagnosis</subject><subject>Discriminant analysis</subject><subject>Electrocardiography</subject><subject>Engineering</subject><subject>Feature selection</subject><subject>Genetic algorithms</subject><subject>Hyperplanes</subject><subject>Machine learning</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Medical imaging</subject><subject>Methodologies and Application</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Principal components analysis</subject><subject>Robotics</subject><subject>Support vector machines</subject><subject>Uncertainty</subject><subject>Wavelet transforms</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEQhonRxFr9A55IPKMD7C7L0TR-JTVe6pmwLNRtWmiBPfTfi10Tb55mDs_7zuRB6JbCPQUQDwmgBiBAJYGq5pTAGZrRinMiKiHPTzsjoqn4JbpKaQPAqKj5DK3eQ2-3ePTGxqwHn4_4MGqfBzcYnYfgsQsR94Ne-5CGhIPDVpsvvCssNiEGr-MR65htGSnbE3WNLpzeJnvzO-fo8_lptXgly4-Xt8XjkhhOZSbSVKKtJe8b7bgRVjacaWu6rqWa2k4aKqBzxlELkhnTS-oqY2onutZVreB8ju6m3n0Mh9GmrDZhjL6cVEzSFjhrGBSKTZSJIaVondrHYVfeVhTUjz012VPFnjrZUz8hPoVSgf3axr_qf1Lfv8R0Ew</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Alizadehsani, Roohallah</creator><creator>Roshanzamir, Mohamad</creator><creator>Abdar, Moloud</creator><creator>Beykikhoshk, Adham</creator><creator>Zangooei, Mohammad Hossein</creator><creator>Khosravi, Abbas</creator><creator>Nahavandi, Saeid</creator><creator>Tan, Ru San</creator><creator>Acharya, U. Rajendra</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20200701</creationdate><title>Model uncertainty quantification for diagnosis of each main coronary artery stenosis</title><author>Alizadehsani, Roohallah ; Roshanzamir, Mohamad ; Abdar, Moloud ; Beykikhoshk, Adham ; Zangooei, Mohammad Hossein ; Khosravi, Abbas ; Nahavandi, Saeid ; Tan, Ru San ; Acharya, U. Rajendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9c478593d6af3c7e9632aecbb81a1eb9c170bfcf1e092ccd91f4cc5f7b8f48733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Angiography</topic><topic>Artificial Intelligence</topic><topic>Cardiovascular disease</topic><topic>Classification</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Coronary artery disease</topic><topic>Coronary vessels</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Diagnosis</topic><topic>Discriminant analysis</topic><topic>Electrocardiography</topic><topic>Engineering</topic><topic>Feature selection</topic><topic>Genetic algorithms</topic><topic>Hyperplanes</topic><topic>Machine learning</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Medical imaging</topic><topic>Methodologies and Application</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Principal components analysis</topic><topic>Robotics</topic><topic>Support vector machines</topic><topic>Uncertainty</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alizadehsani, Roohallah</creatorcontrib><creatorcontrib>Roshanzamir, Mohamad</creatorcontrib><creatorcontrib>Abdar, Moloud</creatorcontrib><creatorcontrib>Beykikhoshk, Adham</creatorcontrib><creatorcontrib>Zangooei, Mohammad Hossein</creatorcontrib><creatorcontrib>Khosravi, Abbas</creatorcontrib><creatorcontrib>Nahavandi, Saeid</creatorcontrib><creatorcontrib>Tan, Ru San</creatorcontrib><creatorcontrib>Acharya, U. Rajendra</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alizadehsani, Roohallah</au><au>Roshanzamir, Mohamad</au><au>Abdar, Moloud</au><au>Beykikhoshk, Adham</au><au>Zangooei, Mohammad Hossein</au><au>Khosravi, Abbas</au><au>Nahavandi, Saeid</au><au>Tan, Ru San</au><au>Acharya, U. Rajendra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model uncertainty quantification for diagnosis of each main coronary artery stenosis</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>24</volume><issue>13</issue><spage>10149</spage><epage>10160</epage><pages>10149-10160</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>One of the main causes of death in the world is coronary artery disease (CAD). CAD occurs when there is stenosis in one or more of the three major coronary arteries: right coronary artery (RCA), left circumflex (LCX) artery, and left anterior descending (LAD) artery. The gold standard or CAD diagnosis is angiography, but it is invasive, costly, and time consuming. Therefore, researchers continually seek new machine learning methods that can screen for CAD non-invasively. For reliable and cost-effective CAD diagnosis, several algorithms have been developed. Most prior studies analyzed the presence or absence of CAD in a dichotomous manner. Herein, we studied the more complex problem of classification of stenosis in individual LAD, LCX, and RCA by applying machine learning algorithms on the Z-Alizadeh Sani dataset that comprised 303 subjects, each with 54 features. In addition, our new methodology is developed to handle model uncertainty in the prediction of individual artery stenosis. It uses the hyperplane distance from a sample and accuracy rate of the classifier during the training phase to enhance its performance. Our results demonstrate high diagnostic performance of the proposed method for diagnosis of stenosis in individual RCA, LCX, and LAD, achieving accuracy rates of 82.67%, 83.67% and 86.43%, respectively. This is the best performance of ML techniques applied to the Z-Alizadeh Sani dataset.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-019-04531-0</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2020-07, Vol.24 (13), p.10149-10160
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2918032620
source Springer Link
subjects Accuracy
Algorithms
Angiography
Artificial Intelligence
Cardiovascular disease
Classification
Computational Intelligence
Control
Coronary artery disease
Coronary vessels
Data mining
Datasets
Decision trees
Diagnosis
Discriminant analysis
Electrocardiography
Engineering
Feature selection
Genetic algorithms
Hyperplanes
Machine learning
Mathematical Logic and Foundations
Mechatronics
Medical imaging
Methodologies and Application
Methods
Neural networks
Principal components analysis
Robotics
Support vector machines
Uncertainty
Wavelet transforms
title Model uncertainty quantification for diagnosis of each main coronary artery stenosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20uncertainty%20quantification%20for%20diagnosis%20of%20each%20main%20coronary%20artery%20stenosis&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Alizadehsani,%20Roohallah&rft.date=2020-07-01&rft.volume=24&rft.issue=13&rft.spage=10149&rft.epage=10160&rft.pages=10149-10160&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-019-04531-0&rft_dat=%3Cproquest_cross%3E2918032620%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-9c478593d6af3c7e9632aecbb81a1eb9c170bfcf1e092ccd91f4cc5f7b8f48733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918032620&rft_id=info:pmid/&rfr_iscdi=true