Loading…
Model uncertainty quantification for diagnosis of each main coronary artery stenosis
One of the main causes of death in the world is coronary artery disease (CAD). CAD occurs when there is stenosis in one or more of the three major coronary arteries: right coronary artery (RCA), left circumflex (LCX) artery, and left anterior descending (LAD) artery. The gold standard or CAD diagnos...
Saved in:
Published in: | Soft computing (Berlin, Germany) Germany), 2020-07, Vol.24 (13), p.10149-10160 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-9c478593d6af3c7e9632aecbb81a1eb9c170bfcf1e092ccd91f4cc5f7b8f48733 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-9c478593d6af3c7e9632aecbb81a1eb9c170bfcf1e092ccd91f4cc5f7b8f48733 |
container_end_page | 10160 |
container_issue | 13 |
container_start_page | 10149 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 24 |
creator | Alizadehsani, Roohallah Roshanzamir, Mohamad Abdar, Moloud Beykikhoshk, Adham Zangooei, Mohammad Hossein Khosravi, Abbas Nahavandi, Saeid Tan, Ru San Acharya, U. Rajendra |
description | One of the main causes of death in the world is coronary artery disease (CAD). CAD occurs when there is stenosis in one or more of the
three
major coronary arteries: right coronary artery (RCA), left circumflex (LCX) artery, and left anterior descending (LAD) artery. The gold standard or CAD diagnosis is angiography, but it is invasive, costly, and time consuming. Therefore, researchers continually seek new machine learning methods that can screen for CAD non-invasively. For reliable and cost-effective CAD diagnosis, several algorithms have been developed. Most prior studies analyzed the presence or absence of CAD in a dichotomous manner. Herein, we studied the more complex problem of classification of stenosis in individual LAD, LCX, and RCA by applying machine learning algorithms on the Z-Alizadeh Sani dataset that comprised 303 subjects, each with 54 features. In addition, our new methodology is developed to handle model uncertainty in the prediction of individual artery stenosis. It uses the hyperplane distance from a sample and accuracy rate of the classifier during the training phase to enhance its performance. Our results demonstrate high diagnostic performance of the proposed method for diagnosis of stenosis in individual RCA, LCX, and LAD, achieving accuracy rates of 82.67%, 83.67% and 86.43%, respectively. This is the best performance of ML techniques applied to the Z-Alizadeh Sani dataset. |
doi_str_mv | 10.1007/s00500-019-04531-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918032620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918032620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9c478593d6af3c7e9632aecbb81a1eb9c170bfcf1e092ccd91f4cc5f7b8f48733</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhonRxFr9A55IPKMD7C7L0TR-JTVe6pmwLNRtWmiBPfTfi10Tb55mDs_7zuRB6JbCPQUQDwmgBiBAJYGq5pTAGZrRinMiKiHPTzsjoqn4JbpKaQPAqKj5DK3eQ2-3ePTGxqwHn4_4MGqfBzcYnYfgsQsR94Ne-5CGhIPDVpsvvCssNiEGr-MR65htGSnbE3WNLpzeJnvzO-fo8_lptXgly4-Xt8XjkhhOZSbSVKKtJe8b7bgRVjacaWu6rqWa2k4aKqBzxlELkhnTS-oqY2onutZVreB8ju6m3n0Mh9GmrDZhjL6cVEzSFjhrGBSKTZSJIaVondrHYVfeVhTUjz012VPFnjrZUz8hPoVSgf3axr_qf1Lfv8R0Ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918032620</pqid></control><display><type>article</type><title>Model uncertainty quantification for diagnosis of each main coronary artery stenosis</title><source>Springer Link</source><creator>Alizadehsani, Roohallah ; Roshanzamir, Mohamad ; Abdar, Moloud ; Beykikhoshk, Adham ; Zangooei, Mohammad Hossein ; Khosravi, Abbas ; Nahavandi, Saeid ; Tan, Ru San ; Acharya, U. Rajendra</creator><creatorcontrib>Alizadehsani, Roohallah ; Roshanzamir, Mohamad ; Abdar, Moloud ; Beykikhoshk, Adham ; Zangooei, Mohammad Hossein ; Khosravi, Abbas ; Nahavandi, Saeid ; Tan, Ru San ; Acharya, U. Rajendra</creatorcontrib><description>One of the main causes of death in the world is coronary artery disease (CAD). CAD occurs when there is stenosis in one or more of the
three
major coronary arteries: right coronary artery (RCA), left circumflex (LCX) artery, and left anterior descending (LAD) artery. The gold standard or CAD diagnosis is angiography, but it is invasive, costly, and time consuming. Therefore, researchers continually seek new machine learning methods that can screen for CAD non-invasively. For reliable and cost-effective CAD diagnosis, several algorithms have been developed. Most prior studies analyzed the presence or absence of CAD in a dichotomous manner. Herein, we studied the more complex problem of classification of stenosis in individual LAD, LCX, and RCA by applying machine learning algorithms on the Z-Alizadeh Sani dataset that comprised 303 subjects, each with 54 features. In addition, our new methodology is developed to handle model uncertainty in the prediction of individual artery stenosis. It uses the hyperplane distance from a sample and accuracy rate of the classifier during the training phase to enhance its performance. Our results demonstrate high diagnostic performance of the proposed method for diagnosis of stenosis in individual RCA, LCX, and LAD, achieving accuracy rates of 82.67%, 83.67% and 86.43%, respectively. This is the best performance of ML techniques applied to the Z-Alizadeh Sani dataset.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-019-04531-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Angiography ; Artificial Intelligence ; Cardiovascular disease ; Classification ; Computational Intelligence ; Control ; Coronary artery disease ; Coronary vessels ; Data mining ; Datasets ; Decision trees ; Diagnosis ; Discriminant analysis ; Electrocardiography ; Engineering ; Feature selection ; Genetic algorithms ; Hyperplanes ; Machine learning ; Mathematical Logic and Foundations ; Mechatronics ; Medical imaging ; Methodologies and Application ; Methods ; Neural networks ; Principal components analysis ; Robotics ; Support vector machines ; Uncertainty ; Wavelet transforms</subject><ispartof>Soft computing (Berlin, Germany), 2020-07, Vol.24 (13), p.10149-10160</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9c478593d6af3c7e9632aecbb81a1eb9c170bfcf1e092ccd91f4cc5f7b8f48733</citedby><cites>FETCH-LOGICAL-c319t-9c478593d6af3c7e9632aecbb81a1eb9c170bfcf1e092ccd91f4cc5f7b8f48733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Alizadehsani, Roohallah</creatorcontrib><creatorcontrib>Roshanzamir, Mohamad</creatorcontrib><creatorcontrib>Abdar, Moloud</creatorcontrib><creatorcontrib>Beykikhoshk, Adham</creatorcontrib><creatorcontrib>Zangooei, Mohammad Hossein</creatorcontrib><creatorcontrib>Khosravi, Abbas</creatorcontrib><creatorcontrib>Nahavandi, Saeid</creatorcontrib><creatorcontrib>Tan, Ru San</creatorcontrib><creatorcontrib>Acharya, U. Rajendra</creatorcontrib><title>Model uncertainty quantification for diagnosis of each main coronary artery stenosis</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>One of the main causes of death in the world is coronary artery disease (CAD). CAD occurs when there is stenosis in one or more of the
three
major coronary arteries: right coronary artery (RCA), left circumflex (LCX) artery, and left anterior descending (LAD) artery. The gold standard or CAD diagnosis is angiography, but it is invasive, costly, and time consuming. Therefore, researchers continually seek new machine learning methods that can screen for CAD non-invasively. For reliable and cost-effective CAD diagnosis, several algorithms have been developed. Most prior studies analyzed the presence or absence of CAD in a dichotomous manner. Herein, we studied the more complex problem of classification of stenosis in individual LAD, LCX, and RCA by applying machine learning algorithms on the Z-Alizadeh Sani dataset that comprised 303 subjects, each with 54 features. In addition, our new methodology is developed to handle model uncertainty in the prediction of individual artery stenosis. It uses the hyperplane distance from a sample and accuracy rate of the classifier during the training phase to enhance its performance. Our results demonstrate high diagnostic performance of the proposed method for diagnosis of stenosis in individual RCA, LCX, and LAD, achieving accuracy rates of 82.67%, 83.67% and 86.43%, respectively. This is the best performance of ML techniques applied to the Z-Alizadeh Sani dataset.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Angiography</subject><subject>Artificial Intelligence</subject><subject>Cardiovascular disease</subject><subject>Classification</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Coronary artery disease</subject><subject>Coronary vessels</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Diagnosis</subject><subject>Discriminant analysis</subject><subject>Electrocardiography</subject><subject>Engineering</subject><subject>Feature selection</subject><subject>Genetic algorithms</subject><subject>Hyperplanes</subject><subject>Machine learning</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Medical imaging</subject><subject>Methodologies and Application</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Principal components analysis</subject><subject>Robotics</subject><subject>Support vector machines</subject><subject>Uncertainty</subject><subject>Wavelet transforms</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEQhonRxFr9A55IPKMD7C7L0TR-JTVe6pmwLNRtWmiBPfTfi10Tb55mDs_7zuRB6JbCPQUQDwmgBiBAJYGq5pTAGZrRinMiKiHPTzsjoqn4JbpKaQPAqKj5DK3eQ2-3ePTGxqwHn4_4MGqfBzcYnYfgsQsR94Ne-5CGhIPDVpsvvCssNiEGr-MR65htGSnbE3WNLpzeJnvzO-fo8_lptXgly4-Xt8XjkhhOZSbSVKKtJe8b7bgRVjacaWu6rqWa2k4aKqBzxlELkhnTS-oqY2onutZVreB8ju6m3n0Mh9GmrDZhjL6cVEzSFjhrGBSKTZSJIaVondrHYVfeVhTUjz012VPFnjrZUz8hPoVSgf3axr_qf1Lfv8R0Ew</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Alizadehsani, Roohallah</creator><creator>Roshanzamir, Mohamad</creator><creator>Abdar, Moloud</creator><creator>Beykikhoshk, Adham</creator><creator>Zangooei, Mohammad Hossein</creator><creator>Khosravi, Abbas</creator><creator>Nahavandi, Saeid</creator><creator>Tan, Ru San</creator><creator>Acharya, U. Rajendra</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20200701</creationdate><title>Model uncertainty quantification for diagnosis of each main coronary artery stenosis</title><author>Alizadehsani, Roohallah ; Roshanzamir, Mohamad ; Abdar, Moloud ; Beykikhoshk, Adham ; Zangooei, Mohammad Hossein ; Khosravi, Abbas ; Nahavandi, Saeid ; Tan, Ru San ; Acharya, U. Rajendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9c478593d6af3c7e9632aecbb81a1eb9c170bfcf1e092ccd91f4cc5f7b8f48733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Angiography</topic><topic>Artificial Intelligence</topic><topic>Cardiovascular disease</topic><topic>Classification</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Coronary artery disease</topic><topic>Coronary vessels</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Diagnosis</topic><topic>Discriminant analysis</topic><topic>Electrocardiography</topic><topic>Engineering</topic><topic>Feature selection</topic><topic>Genetic algorithms</topic><topic>Hyperplanes</topic><topic>Machine learning</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Medical imaging</topic><topic>Methodologies and Application</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Principal components analysis</topic><topic>Robotics</topic><topic>Support vector machines</topic><topic>Uncertainty</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alizadehsani, Roohallah</creatorcontrib><creatorcontrib>Roshanzamir, Mohamad</creatorcontrib><creatorcontrib>Abdar, Moloud</creatorcontrib><creatorcontrib>Beykikhoshk, Adham</creatorcontrib><creatorcontrib>Zangooei, Mohammad Hossein</creatorcontrib><creatorcontrib>Khosravi, Abbas</creatorcontrib><creatorcontrib>Nahavandi, Saeid</creatorcontrib><creatorcontrib>Tan, Ru San</creatorcontrib><creatorcontrib>Acharya, U. Rajendra</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alizadehsani, Roohallah</au><au>Roshanzamir, Mohamad</au><au>Abdar, Moloud</au><au>Beykikhoshk, Adham</au><au>Zangooei, Mohammad Hossein</au><au>Khosravi, Abbas</au><au>Nahavandi, Saeid</au><au>Tan, Ru San</au><au>Acharya, U. Rajendra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model uncertainty quantification for diagnosis of each main coronary artery stenosis</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>24</volume><issue>13</issue><spage>10149</spage><epage>10160</epage><pages>10149-10160</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>One of the main causes of death in the world is coronary artery disease (CAD). CAD occurs when there is stenosis in one or more of the
three
major coronary arteries: right coronary artery (RCA), left circumflex (LCX) artery, and left anterior descending (LAD) artery. The gold standard or CAD diagnosis is angiography, but it is invasive, costly, and time consuming. Therefore, researchers continually seek new machine learning methods that can screen for CAD non-invasively. For reliable and cost-effective CAD diagnosis, several algorithms have been developed. Most prior studies analyzed the presence or absence of CAD in a dichotomous manner. Herein, we studied the more complex problem of classification of stenosis in individual LAD, LCX, and RCA by applying machine learning algorithms on the Z-Alizadeh Sani dataset that comprised 303 subjects, each with 54 features. In addition, our new methodology is developed to handle model uncertainty in the prediction of individual artery stenosis. It uses the hyperplane distance from a sample and accuracy rate of the classifier during the training phase to enhance its performance. Our results demonstrate high diagnostic performance of the proposed method for diagnosis of stenosis in individual RCA, LCX, and LAD, achieving accuracy rates of 82.67%, 83.67% and 86.43%, respectively. This is the best performance of ML techniques applied to the Z-Alizadeh Sani dataset.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-019-04531-0</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2020-07, Vol.24 (13), p.10149-10160 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2918032620 |
source | Springer Link |
subjects | Accuracy Algorithms Angiography Artificial Intelligence Cardiovascular disease Classification Computational Intelligence Control Coronary artery disease Coronary vessels Data mining Datasets Decision trees Diagnosis Discriminant analysis Electrocardiography Engineering Feature selection Genetic algorithms Hyperplanes Machine learning Mathematical Logic and Foundations Mechatronics Medical imaging Methodologies and Application Methods Neural networks Principal components analysis Robotics Support vector machines Uncertainty Wavelet transforms |
title | Model uncertainty quantification for diagnosis of each main coronary artery stenosis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20uncertainty%20quantification%20for%20diagnosis%20of%20each%20main%20coronary%20artery%20stenosis&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Alizadehsani,%20Roohallah&rft.date=2020-07-01&rft.volume=24&rft.issue=13&rft.spage=10149&rft.epage=10160&rft.pages=10149-10160&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-019-04531-0&rft_dat=%3Cproquest_cross%3E2918032620%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-9c478593d6af3c7e9632aecbb81a1eb9c170bfcf1e092ccd91f4cc5f7b8f48733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918032620&rft_id=info:pmid/&rfr_iscdi=true |