Loading…

Covariances with OWA operators and Bonferroni means

The covariance is a statistical technique that is widely used to measure the dispersion between two sets of elements. This work develops new covariance measures by using the ordered weighted average (OWA) operator and Bonferroni means. Thus, this work presents the Bonferroni covariance OWA operator....

Full description

Saved in:
Bibliographic Details
Published in:Soft computing (Berlin, Germany) Germany), 2020-10, Vol.24 (19), p.14999-15014
Main Authors: Blanco-Mesa, Fabio, León-Castro, Ernesto, Merigó, José M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-1ad6ca5adb65e40d1dbe2f202b8c53b38d022c55345f79458cff6331cfda71e63
cites cdi_FETCH-LOGICAL-c319t-1ad6ca5adb65e40d1dbe2f202b8c53b38d022c55345f79458cff6331cfda71e63
container_end_page 15014
container_issue 19
container_start_page 14999
container_title Soft computing (Berlin, Germany)
container_volume 24
creator Blanco-Mesa, Fabio
León-Castro, Ernesto
Merigó, José M.
description The covariance is a statistical technique that is widely used to measure the dispersion between two sets of elements. This work develops new covariance measures by using the ordered weighted average (OWA) operator and Bonferroni means. Thus, this work presents the Bonferroni covariance OWA operator. The main advantage of this approach is that the decision maker can underestimate or overestimate the covariance according to his or her attitudes. The article further generalizes this formulation by using generalized and quasi-arithmetic means to obtain a wide range of particular types of covariances, including the quadratic Bonferroni covariance and the cubic Bonferroni covariance. The paper also considers some other extensions by using induced aggregation operators in order to use complex reordering processes in the analysis. The work ends by studying the applicability of these new techniques to real-world problems and presents an illustrative example of a research and development (R&D) investment problem.
doi_str_mv 10.1007/s00500-020-04852-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918048806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918048806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1ad6ca5adb65e40d1dbe2f202b8c53b38d022c55345f79458cff6331cfda71e63</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhF4mxYv-LkWCIoSJV6AXG0HD8gFbWDnYL496QNEjcOq93DzKzmQ-iSwDUBkDcZQABgoOPwSlAsjtCMcMaw5LI-PtwUy5KzU3SW8waAEinYDLEmfurU6WBcLr664a1YvyyK2Lukh5hyoYMtbmPwLqUYumLrdMjn6MTr9-wufvccPd_fPTUPeLVePjaLFTaM1AMm2pZGC23bUjgOltjWUU-BtpURrGWVBUqNEIwLL2suKuN9yRgx3mpJXMnm6GrK7VP82Lk8qE3cpTC-VLQm1Vi0gr2KTiqTYs7JedWnbqvTtyKg9nDUBEeNcNQBjhKjiU2mPIrDq0t_0f-4fgBnr2Y5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918048806</pqid></control><display><type>article</type><title>Covariances with OWA operators and Bonferroni means</title><source>Springer Link</source><creator>Blanco-Mesa, Fabio ; León-Castro, Ernesto ; Merigó, José M.</creator><creatorcontrib>Blanco-Mesa, Fabio ; León-Castro, Ernesto ; Merigó, José M.</creatorcontrib><description>The covariance is a statistical technique that is widely used to measure the dispersion between two sets of elements. This work develops new covariance measures by using the ordered weighted average (OWA) operator and Bonferroni means. Thus, this work presents the Bonferroni covariance OWA operator. The main advantage of this approach is that the decision maker can underestimate or overestimate the covariance according to his or her attitudes. The article further generalizes this formulation by using generalized and quasi-arithmetic means to obtain a wide range of particular types of covariances, including the quadratic Bonferroni covariance and the cubic Bonferroni covariance. The paper also considers some other extensions by using induced aggregation operators in order to use complex reordering processes in the analysis. The work ends by studying the applicability of these new techniques to real-world problems and presents an illustrative example of a research and development (R&amp;D) investment problem.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-020-04852-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Attitudes ; Computational Intelligence ; Control ; Covariance ; Decision making ; Economics ; Engineering ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Operators ; Proposals ; R&amp;D ; Random variables ; Research &amp; development ; Robotics ; Sales forecasting ; Statistics ; Subjectivity</subject><ispartof>Soft computing (Berlin, Germany), 2020-10, Vol.24 (19), p.14999-15014</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1ad6ca5adb65e40d1dbe2f202b8c53b38d022c55345f79458cff6331cfda71e63</citedby><cites>FETCH-LOGICAL-c319t-1ad6ca5adb65e40d1dbe2f202b8c53b38d022c55345f79458cff6331cfda71e63</cites><orcidid>0000-0002-9462-6498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Blanco-Mesa, Fabio</creatorcontrib><creatorcontrib>León-Castro, Ernesto</creatorcontrib><creatorcontrib>Merigó, José M.</creatorcontrib><title>Covariances with OWA operators and Bonferroni means</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>The covariance is a statistical technique that is widely used to measure the dispersion between two sets of elements. This work develops new covariance measures by using the ordered weighted average (OWA) operator and Bonferroni means. Thus, this work presents the Bonferroni covariance OWA operator. The main advantage of this approach is that the decision maker can underestimate or overestimate the covariance according to his or her attitudes. The article further generalizes this formulation by using generalized and quasi-arithmetic means to obtain a wide range of particular types of covariances, including the quadratic Bonferroni covariance and the cubic Bonferroni covariance. The paper also considers some other extensions by using induced aggregation operators in order to use complex reordering processes in the analysis. The work ends by studying the applicability of these new techniques to real-world problems and presents an illustrative example of a research and development (R&amp;D) investment problem.</description><subject>Artificial Intelligence</subject><subject>Attitudes</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Covariance</subject><subject>Decision making</subject><subject>Economics</subject><subject>Engineering</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Operators</subject><subject>Proposals</subject><subject>R&amp;D</subject><subject>Random variables</subject><subject>Research &amp; development</subject><subject>Robotics</subject><subject>Sales forecasting</subject><subject>Statistics</subject><subject>Subjectivity</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzhF4mxYv-LkWCIoSJV6AXG0HD8gFbWDnYL496QNEjcOq93DzKzmQ-iSwDUBkDcZQABgoOPwSlAsjtCMcMaw5LI-PtwUy5KzU3SW8waAEinYDLEmfurU6WBcLr664a1YvyyK2Lukh5hyoYMtbmPwLqUYumLrdMjn6MTr9-wufvccPd_fPTUPeLVePjaLFTaM1AMm2pZGC23bUjgOltjWUU-BtpURrGWVBUqNEIwLL2suKuN9yRgx3mpJXMnm6GrK7VP82Lk8qE3cpTC-VLQm1Vi0gr2KTiqTYs7JedWnbqvTtyKg9nDUBEeNcNQBjhKjiU2mPIrDq0t_0f-4fgBnr2Y5</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Blanco-Mesa, Fabio</creator><creator>León-Castro, Ernesto</creator><creator>Merigó, José M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9462-6498</orcidid></search><sort><creationdate>20201001</creationdate><title>Covariances with OWA operators and Bonferroni means</title><author>Blanco-Mesa, Fabio ; León-Castro, Ernesto ; Merigó, José M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1ad6ca5adb65e40d1dbe2f202b8c53b38d022c55345f79458cff6331cfda71e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Attitudes</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Covariance</topic><topic>Decision making</topic><topic>Economics</topic><topic>Engineering</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Operators</topic><topic>Proposals</topic><topic>R&amp;D</topic><topic>Random variables</topic><topic>Research &amp; development</topic><topic>Robotics</topic><topic>Sales forecasting</topic><topic>Statistics</topic><topic>Subjectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blanco-Mesa, Fabio</creatorcontrib><creatorcontrib>León-Castro, Ernesto</creatorcontrib><creatorcontrib>Merigó, José M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blanco-Mesa, Fabio</au><au>León-Castro, Ernesto</au><au>Merigó, José M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covariances with OWA operators and Bonferroni means</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>24</volume><issue>19</issue><spage>14999</spage><epage>15014</epage><pages>14999-15014</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>The covariance is a statistical technique that is widely used to measure the dispersion between two sets of elements. This work develops new covariance measures by using the ordered weighted average (OWA) operator and Bonferroni means. Thus, this work presents the Bonferroni covariance OWA operator. The main advantage of this approach is that the decision maker can underestimate or overestimate the covariance according to his or her attitudes. The article further generalizes this formulation by using generalized and quasi-arithmetic means to obtain a wide range of particular types of covariances, including the quadratic Bonferroni covariance and the cubic Bonferroni covariance. The paper also considers some other extensions by using induced aggregation operators in order to use complex reordering processes in the analysis. The work ends by studying the applicability of these new techniques to real-world problems and presents an illustrative example of a research and development (R&amp;D) investment problem.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-020-04852-5</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9462-6498</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2020-10, Vol.24 (19), p.14999-15014
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2918048806
source Springer Link
subjects Artificial Intelligence
Attitudes
Computational Intelligence
Control
Covariance
Decision making
Economics
Engineering
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Operators
Proposals
R&D
Random variables
Research & development
Robotics
Sales forecasting
Statistics
Subjectivity
title Covariances with OWA operators and Bonferroni means
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covariances%20with%20OWA%20operators%20and%20Bonferroni%20means&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Blanco-Mesa,%20Fabio&rft.date=2020-10-01&rft.volume=24&rft.issue=19&rft.spage=14999&rft.epage=15014&rft.pages=14999-15014&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-020-04852-5&rft_dat=%3Cproquest_cross%3E2918048806%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-1ad6ca5adb65e40d1dbe2f202b8c53b38d022c55345f79458cff6331cfda71e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918048806&rft_id=info:pmid/&rfr_iscdi=true