Loading…
Covariances with OWA operators and Bonferroni means
The covariance is a statistical technique that is widely used to measure the dispersion between two sets of elements. This work develops new covariance measures by using the ordered weighted average (OWA) operator and Bonferroni means. Thus, this work presents the Bonferroni covariance OWA operator....
Saved in:
Published in: | Soft computing (Berlin, Germany) Germany), 2020-10, Vol.24 (19), p.14999-15014 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-1ad6ca5adb65e40d1dbe2f202b8c53b38d022c55345f79458cff6331cfda71e63 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-1ad6ca5adb65e40d1dbe2f202b8c53b38d022c55345f79458cff6331cfda71e63 |
container_end_page | 15014 |
container_issue | 19 |
container_start_page | 14999 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 24 |
creator | Blanco-Mesa, Fabio León-Castro, Ernesto Merigó, José M. |
description | The covariance is a statistical technique that is widely used to measure the dispersion between two sets of elements. This work develops new covariance measures by using the ordered weighted average (OWA) operator and Bonferroni means. Thus, this work presents the Bonferroni covariance OWA operator. The main advantage of this approach is that the decision maker can underestimate or overestimate the covariance according to his or her attitudes. The article further generalizes this formulation by using generalized and quasi-arithmetic means to obtain a wide range of particular types of covariances, including the quadratic Bonferroni covariance and the cubic Bonferroni covariance. The paper also considers some other extensions by using induced aggregation operators in order to use complex reordering processes in the analysis. The work ends by studying the applicability of these new techniques to real-world problems and presents an illustrative example of a research and development (R&D) investment problem. |
doi_str_mv | 10.1007/s00500-020-04852-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918048806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918048806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1ad6ca5adb65e40d1dbe2f202b8c53b38d022c55345f79458cff6331cfda71e63</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhF4mxYv-LkWCIoSJV6AXG0HD8gFbWDnYL496QNEjcOq93DzKzmQ-iSwDUBkDcZQABgoOPwSlAsjtCMcMaw5LI-PtwUy5KzU3SW8waAEinYDLEmfurU6WBcLr664a1YvyyK2Lukh5hyoYMtbmPwLqUYumLrdMjn6MTr9-wufvccPd_fPTUPeLVePjaLFTaM1AMm2pZGC23bUjgOltjWUU-BtpURrGWVBUqNEIwLL2suKuN9yRgx3mpJXMnm6GrK7VP82Lk8qE3cpTC-VLQm1Vi0gr2KTiqTYs7JedWnbqvTtyKg9nDUBEeNcNQBjhKjiU2mPIrDq0t_0f-4fgBnr2Y5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918048806</pqid></control><display><type>article</type><title>Covariances with OWA operators and Bonferroni means</title><source>Springer Link</source><creator>Blanco-Mesa, Fabio ; León-Castro, Ernesto ; Merigó, José M.</creator><creatorcontrib>Blanco-Mesa, Fabio ; León-Castro, Ernesto ; Merigó, José M.</creatorcontrib><description>The covariance is a statistical technique that is widely used to measure the dispersion between two sets of elements. This work develops new covariance measures by using the ordered weighted average (OWA) operator and Bonferroni means. Thus, this work presents the Bonferroni covariance OWA operator. The main advantage of this approach is that the decision maker can underestimate or overestimate the covariance according to his or her attitudes. The article further generalizes this formulation by using generalized and quasi-arithmetic means to obtain a wide range of particular types of covariances, including the quadratic Bonferroni covariance and the cubic Bonferroni covariance. The paper also considers some other extensions by using induced aggregation operators in order to use complex reordering processes in the analysis. The work ends by studying the applicability of these new techniques to real-world problems and presents an illustrative example of a research and development (R&D) investment problem.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-020-04852-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Attitudes ; Computational Intelligence ; Control ; Covariance ; Decision making ; Economics ; Engineering ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Operators ; Proposals ; R&D ; Random variables ; Research & development ; Robotics ; Sales forecasting ; Statistics ; Subjectivity</subject><ispartof>Soft computing (Berlin, Germany), 2020-10, Vol.24 (19), p.14999-15014</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1ad6ca5adb65e40d1dbe2f202b8c53b38d022c55345f79458cff6331cfda71e63</citedby><cites>FETCH-LOGICAL-c319t-1ad6ca5adb65e40d1dbe2f202b8c53b38d022c55345f79458cff6331cfda71e63</cites><orcidid>0000-0002-9462-6498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Blanco-Mesa, Fabio</creatorcontrib><creatorcontrib>León-Castro, Ernesto</creatorcontrib><creatorcontrib>Merigó, José M.</creatorcontrib><title>Covariances with OWA operators and Bonferroni means</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>The covariance is a statistical technique that is widely used to measure the dispersion between two sets of elements. This work develops new covariance measures by using the ordered weighted average (OWA) operator and Bonferroni means. Thus, this work presents the Bonferroni covariance OWA operator. The main advantage of this approach is that the decision maker can underestimate or overestimate the covariance according to his or her attitudes. The article further generalizes this formulation by using generalized and quasi-arithmetic means to obtain a wide range of particular types of covariances, including the quadratic Bonferroni covariance and the cubic Bonferroni covariance. The paper also considers some other extensions by using induced aggregation operators in order to use complex reordering processes in the analysis. The work ends by studying the applicability of these new techniques to real-world problems and presents an illustrative example of a research and development (R&D) investment problem.</description><subject>Artificial Intelligence</subject><subject>Attitudes</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Covariance</subject><subject>Decision making</subject><subject>Economics</subject><subject>Engineering</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Operators</subject><subject>Proposals</subject><subject>R&D</subject><subject>Random variables</subject><subject>Research & development</subject><subject>Robotics</subject><subject>Sales forecasting</subject><subject>Statistics</subject><subject>Subjectivity</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzhF4mxYv-LkWCIoSJV6AXG0HD8gFbWDnYL496QNEjcOq93DzKzmQ-iSwDUBkDcZQABgoOPwSlAsjtCMcMaw5LI-PtwUy5KzU3SW8waAEinYDLEmfurU6WBcLr664a1YvyyK2Lukh5hyoYMtbmPwLqUYumLrdMjn6MTr9-wufvccPd_fPTUPeLVePjaLFTaM1AMm2pZGC23bUjgOltjWUU-BtpURrGWVBUqNEIwLL2suKuN9yRgx3mpJXMnm6GrK7VP82Lk8qE3cpTC-VLQm1Vi0gr2KTiqTYs7JedWnbqvTtyKg9nDUBEeNcNQBjhKjiU2mPIrDq0t_0f-4fgBnr2Y5</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Blanco-Mesa, Fabio</creator><creator>León-Castro, Ernesto</creator><creator>Merigó, José M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9462-6498</orcidid></search><sort><creationdate>20201001</creationdate><title>Covariances with OWA operators and Bonferroni means</title><author>Blanco-Mesa, Fabio ; León-Castro, Ernesto ; Merigó, José M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1ad6ca5adb65e40d1dbe2f202b8c53b38d022c55345f79458cff6331cfda71e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Attitudes</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Covariance</topic><topic>Decision making</topic><topic>Economics</topic><topic>Engineering</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Operators</topic><topic>Proposals</topic><topic>R&D</topic><topic>Random variables</topic><topic>Research & development</topic><topic>Robotics</topic><topic>Sales forecasting</topic><topic>Statistics</topic><topic>Subjectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blanco-Mesa, Fabio</creatorcontrib><creatorcontrib>León-Castro, Ernesto</creatorcontrib><creatorcontrib>Merigó, José M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blanco-Mesa, Fabio</au><au>León-Castro, Ernesto</au><au>Merigó, José M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covariances with OWA operators and Bonferroni means</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>24</volume><issue>19</issue><spage>14999</spage><epage>15014</epage><pages>14999-15014</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>The covariance is a statistical technique that is widely used to measure the dispersion between two sets of elements. This work develops new covariance measures by using the ordered weighted average (OWA) operator and Bonferroni means. Thus, this work presents the Bonferroni covariance OWA operator. The main advantage of this approach is that the decision maker can underestimate or overestimate the covariance according to his or her attitudes. The article further generalizes this formulation by using generalized and quasi-arithmetic means to obtain a wide range of particular types of covariances, including the quadratic Bonferroni covariance and the cubic Bonferroni covariance. The paper also considers some other extensions by using induced aggregation operators in order to use complex reordering processes in the analysis. The work ends by studying the applicability of these new techniques to real-world problems and presents an illustrative example of a research and development (R&D) investment problem.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-020-04852-5</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9462-6498</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2020-10, Vol.24 (19), p.14999-15014 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_2918048806 |
source | Springer Link |
subjects | Artificial Intelligence Attitudes Computational Intelligence Control Covariance Decision making Economics Engineering Mathematical Logic and Foundations Mechatronics Methodologies and Application Operators Proposals R&D Random variables Research & development Robotics Sales forecasting Statistics Subjectivity |
title | Covariances with OWA operators and Bonferroni means |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covariances%20with%20OWA%20operators%20and%20Bonferroni%20means&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Blanco-Mesa,%20Fabio&rft.date=2020-10-01&rft.volume=24&rft.issue=19&rft.spage=14999&rft.epage=15014&rft.pages=14999-15014&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-020-04852-5&rft_dat=%3Cproquest_cross%3E2918048806%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-1ad6ca5adb65e40d1dbe2f202b8c53b38d022c55345f79458cff6331cfda71e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918048806&rft_id=info:pmid/&rfr_iscdi=true |