Loading…

EPR Spectroscopy of 53Cr3+ Monoisotopic Impurity Ions in a Single Crystal of Scandium Orthosilicate Sc2SiO5

Monoisotopic 53 Cr 3 + impurity ions in scandium orthosilicate single crystal ( Sc 2 SiO 5 ) are studied by the method of electron paramagnetic resonance in the X-band frequencies. The directions of the main principal magnetic axes and the parameters of the effective spin Hamiltonian that describe t...

Full description

Saved in:
Bibliographic Details
Published in:Applied magnetic resonance 2021, Vol.52 (1), p.5-14
Main Authors: Tarasov, V. F., Eremina, R. M., Konov, K. B., Likerov, R. F., Shestakov, A. V., Zavartsev, Yu. D., Kutovoi, S. A.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 14
container_issue 1
container_start_page 5
container_title Applied magnetic resonance
container_volume 52
creator Tarasov, V. F.
Eremina, R. M.
Konov, K. B.
Likerov, R. F.
Shestakov, A. V.
Zavartsev, Yu. D.
Kutovoi, S. A.
description Monoisotopic 53 Cr 3 + impurity ions in scandium orthosilicate single crystal ( Sc 2 SiO 5 ) are studied by the method of electron paramagnetic resonance in the X-band frequencies. The directions of the main principal magnetic axes and the parameters of the effective spin Hamiltonian that describe the magnetic characteristics of the impurity centers of chromium, which replaces scandium in two structurally nonequivalent positions, are determined. It is shown that the orientation dependencies of the EPR spectra are well described by the second-order spin Hamiltonian corresponding to the orthorhombic symmetry of the local crystal field acting on the impurity ion. It was assumed that the g -tensor and the A -tensor determining the Zeeman energy of electronic levels in a magnetic field and the hyperfine interaction of electron and nuclear spins are isotropic, and the entire anisotropy of the EPR spectra is due to the anisotropy of the D -tensor, which describes the fine structure of electronic levels in a crystalline electric field. A strong dependence of the probability of “forbidden” transitions between hyperfine sublevels of electronic levels on the orientation of an external magnetic field is established. Moreover, for some orientations, the probability of “forbidden” transitions exceeds the probability of “allowed” transitions.
doi_str_mv 10.1007/s00723-020-01225-x
format article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2918050891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918050891</sourcerecordid><originalsourceid>FETCH-LOGICAL-p72x-7fa5ddc46380b87bc978bd493e5fd46554fa47fa83335bcbf84593f8554f0c9f3</originalsourceid><addsrcrecordid>eNpFkN9LwzAQgIMoOKf_gE8BHyV66TVL8ijFH4PJxO69tGmjmV1Tkw62_97OCb7cwd13d9xHyDWHOw4g7-MYEmSQAAOeJILtTsiEzzgyKUCekglolExjKs_JRYxrAC4UlxPy9fj2TvO-MUPw0fh-T72lArOAt_TVd95FP_jeGTrf9Nvghj2d-y5S19GS5q77aBuahX0cyvYwmJuyq912Q5dh-PTRtc6UQzOWk9wtxSU5s2Ubm6u_PCWrp8dV9sIWy-d59rBgvUx2TNpS1LVJZ6igUrIyWqqqTjU2wtbpTIjUlukIKUQUlamsSoVGqw4NMNrilNwc1_bBf2-bOBRrvw3deLFINFcgQGk-UnikYh_GP5rwT3EoDlKLo9RilFr8Si12-AM6fmpL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918050891</pqid></control><display><type>article</type><title>EPR Spectroscopy of 53Cr3+ Monoisotopic Impurity Ions in a Single Crystal of Scandium Orthosilicate Sc2SiO5</title><source>Springer Link</source><creator>Tarasov, V. F. ; Eremina, R. M. ; Konov, K. B. ; Likerov, R. F. ; Shestakov, A. V. ; Zavartsev, Yu. D. ; Kutovoi, S. A.</creator><creatorcontrib>Tarasov, V. F. ; Eremina, R. M. ; Konov, K. B. ; Likerov, R. F. ; Shestakov, A. V. ; Zavartsev, Yu. D. ; Kutovoi, S. A.</creatorcontrib><description>Monoisotopic 53 Cr 3 + impurity ions in scandium orthosilicate single crystal ( Sc 2 SiO 5 ) are studied by the method of electron paramagnetic resonance in the X-band frequencies. The directions of the main principal magnetic axes and the parameters of the effective spin Hamiltonian that describe the magnetic characteristics of the impurity centers of chromium, which replaces scandium in two structurally nonequivalent positions, are determined. It is shown that the orientation dependencies of the EPR spectra are well described by the second-order spin Hamiltonian corresponding to the orthorhombic symmetry of the local crystal field acting on the impurity ion. It was assumed that the g -tensor and the A -tensor determining the Zeeman energy of electronic levels in a magnetic field and the hyperfine interaction of electron and nuclear spins are isotropic, and the entire anisotropy of the EPR spectra is due to the anisotropy of the D -tensor, which describes the fine structure of electronic levels in a crystalline electric field. A strong dependence of the probability of “forbidden” transitions between hyperfine sublevels of electronic levels on the orientation of an external magnetic field is established. Moreover, for some orientations, the probability of “forbidden” transitions exceeds the probability of “allowed” transitions.</description><identifier>ISSN: 0937-9347</identifier><identifier>EISSN: 1613-7507</identifier><identifier>DOI: 10.1007/s00723-020-01225-x</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Anisotropy ; Atoms and Molecules in Strong Fields ; Electric fields ; Electron paramagnetic resonance ; Electron spin ; Electrons ; Fine structure ; Impurities ; Laser Matter Interaction ; Magnetic fields ; Magnetic properties ; Mathematical analysis ; Organic Chemistry ; Original Paper ; Physical Chemistry ; Physics ; Physics and Astronomy ; Scandium ; Single crystals ; Solid State Physics ; Spectra ; Spectroscopy/Spectrometry ; Spectrum analysis ; Superhigh frequencies ; Tensors</subject><ispartof>Applied magnetic resonance, 2021, Vol.52 (1), p.5-14</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tarasov, V. F.</creatorcontrib><creatorcontrib>Eremina, R. M.</creatorcontrib><creatorcontrib>Konov, K. B.</creatorcontrib><creatorcontrib>Likerov, R. F.</creatorcontrib><creatorcontrib>Shestakov, A. V.</creatorcontrib><creatorcontrib>Zavartsev, Yu. D.</creatorcontrib><creatorcontrib>Kutovoi, S. A.</creatorcontrib><title>EPR Spectroscopy of 53Cr3+ Monoisotopic Impurity Ions in a Single Crystal of Scandium Orthosilicate Sc2SiO5</title><title>Applied magnetic resonance</title><addtitle>Appl Magn Reson</addtitle><description>Monoisotopic 53 Cr 3 + impurity ions in scandium orthosilicate single crystal ( Sc 2 SiO 5 ) are studied by the method of electron paramagnetic resonance in the X-band frequencies. The directions of the main principal magnetic axes and the parameters of the effective spin Hamiltonian that describe the magnetic characteristics of the impurity centers of chromium, which replaces scandium in two structurally nonequivalent positions, are determined. It is shown that the orientation dependencies of the EPR spectra are well described by the second-order spin Hamiltonian corresponding to the orthorhombic symmetry of the local crystal field acting on the impurity ion. It was assumed that the g -tensor and the A -tensor determining the Zeeman energy of electronic levels in a magnetic field and the hyperfine interaction of electron and nuclear spins are isotropic, and the entire anisotropy of the EPR spectra is due to the anisotropy of the D -tensor, which describes the fine structure of electronic levels in a crystalline electric field. A strong dependence of the probability of “forbidden” transitions between hyperfine sublevels of electronic levels on the orientation of an external magnetic field is established. Moreover, for some orientations, the probability of “forbidden” transitions exceeds the probability of “allowed” transitions.</description><subject>Anisotropy</subject><subject>Atoms and Molecules in Strong Fields</subject><subject>Electric fields</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>Fine structure</subject><subject>Impurities</subject><subject>Laser Matter Interaction</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Mathematical analysis</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Scandium</subject><subject>Single crystals</subject><subject>Solid State Physics</subject><subject>Spectra</subject><subject>Spectroscopy/Spectrometry</subject><subject>Spectrum analysis</subject><subject>Superhigh frequencies</subject><subject>Tensors</subject><issn>0937-9347</issn><issn>1613-7507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkN9LwzAQgIMoOKf_gE8BHyV66TVL8ijFH4PJxO69tGmjmV1Tkw62_97OCb7cwd13d9xHyDWHOw4g7-MYEmSQAAOeJILtTsiEzzgyKUCekglolExjKs_JRYxrAC4UlxPy9fj2TvO-MUPw0fh-T72lArOAt_TVd95FP_jeGTrf9Nvghj2d-y5S19GS5q77aBuahX0cyvYwmJuyq912Q5dh-PTRtc6UQzOWk9wtxSU5s2Ubm6u_PCWrp8dV9sIWy-d59rBgvUx2TNpS1LVJZ6igUrIyWqqqTjU2wtbpTIjUlukIKUQUlamsSoVGqw4NMNrilNwc1_bBf2-bOBRrvw3deLFINFcgQGk-UnikYh_GP5rwT3EoDlKLo9RilFr8Si12-AM6fmpL</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Tarasov, V. F.</creator><creator>Eremina, R. M.</creator><creator>Konov, K. B.</creator><creator>Likerov, R. F.</creator><creator>Shestakov, A. V.</creator><creator>Zavartsev, Yu. D.</creator><creator>Kutovoi, S. A.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>2021</creationdate><title>EPR Spectroscopy of 53Cr3+ Monoisotopic Impurity Ions in a Single Crystal of Scandium Orthosilicate Sc2SiO5</title><author>Tarasov, V. F. ; Eremina, R. M. ; Konov, K. B. ; Likerov, R. F. ; Shestakov, A. V. ; Zavartsev, Yu. D. ; Kutovoi, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p72x-7fa5ddc46380b87bc978bd493e5fd46554fa47fa83335bcbf84593f8554f0c9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Atoms and Molecules in Strong Fields</topic><topic>Electric fields</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>Fine structure</topic><topic>Impurities</topic><topic>Laser Matter Interaction</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Mathematical analysis</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Scandium</topic><topic>Single crystals</topic><topic>Solid State Physics</topic><topic>Spectra</topic><topic>Spectroscopy/Spectrometry</topic><topic>Spectrum analysis</topic><topic>Superhigh frequencies</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarasov, V. F.</creatorcontrib><creatorcontrib>Eremina, R. M.</creatorcontrib><creatorcontrib>Konov, K. B.</creatorcontrib><creatorcontrib>Likerov, R. F.</creatorcontrib><creatorcontrib>Shestakov, A. V.</creatorcontrib><creatorcontrib>Zavartsev, Yu. D.</creatorcontrib><creatorcontrib>Kutovoi, S. A.</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied magnetic resonance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarasov, V. F.</au><au>Eremina, R. M.</au><au>Konov, K. B.</au><au>Likerov, R. F.</au><au>Shestakov, A. V.</au><au>Zavartsev, Yu. D.</au><au>Kutovoi, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EPR Spectroscopy of 53Cr3+ Monoisotopic Impurity Ions in a Single Crystal of Scandium Orthosilicate Sc2SiO5</atitle><jtitle>Applied magnetic resonance</jtitle><stitle>Appl Magn Reson</stitle><date>2021</date><risdate>2021</risdate><volume>52</volume><issue>1</issue><spage>5</spage><epage>14</epage><pages>5-14</pages><issn>0937-9347</issn><eissn>1613-7507</eissn><abstract>Monoisotopic 53 Cr 3 + impurity ions in scandium orthosilicate single crystal ( Sc 2 SiO 5 ) are studied by the method of electron paramagnetic resonance in the X-band frequencies. The directions of the main principal magnetic axes and the parameters of the effective spin Hamiltonian that describe the magnetic characteristics of the impurity centers of chromium, which replaces scandium in two structurally nonequivalent positions, are determined. It is shown that the orientation dependencies of the EPR spectra are well described by the second-order spin Hamiltonian corresponding to the orthorhombic symmetry of the local crystal field acting on the impurity ion. It was assumed that the g -tensor and the A -tensor determining the Zeeman energy of electronic levels in a magnetic field and the hyperfine interaction of electron and nuclear spins are isotropic, and the entire anisotropy of the EPR spectra is due to the anisotropy of the D -tensor, which describes the fine structure of electronic levels in a crystalline electric field. A strong dependence of the probability of “forbidden” transitions between hyperfine sublevels of electronic levels on the orientation of an external magnetic field is established. Moreover, for some orientations, the probability of “forbidden” transitions exceeds the probability of “allowed” transitions.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00723-020-01225-x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0937-9347
ispartof Applied magnetic resonance, 2021, Vol.52 (1), p.5-14
issn 0937-9347
1613-7507
language eng
recordid cdi_proquest_journals_2918050891
source Springer Link
subjects Anisotropy
Atoms and Molecules in Strong Fields
Electric fields
Electron paramagnetic resonance
Electron spin
Electrons
Fine structure
Impurities
Laser Matter Interaction
Magnetic fields
Magnetic properties
Mathematical analysis
Organic Chemistry
Original Paper
Physical Chemistry
Physics
Physics and Astronomy
Scandium
Single crystals
Solid State Physics
Spectra
Spectroscopy/Spectrometry
Spectrum analysis
Superhigh frequencies
Tensors
title EPR Spectroscopy of 53Cr3+ Monoisotopic Impurity Ions in a Single Crystal of Scandium Orthosilicate Sc2SiO5
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A03%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EPR%20Spectroscopy%20of%2053Cr3+%20Monoisotopic%20Impurity%20Ions%20in%20a%20Single%20Crystal%20of%20Scandium%20Orthosilicate%20Sc2SiO5&rft.jtitle=Applied%20magnetic%20resonance&rft.au=Tarasov,%20V.%20F.&rft.date=2021&rft.volume=52&rft.issue=1&rft.spage=5&rft.epage=14&rft.pages=5-14&rft.issn=0937-9347&rft.eissn=1613-7507&rft_id=info:doi/10.1007/s00723-020-01225-x&rft_dat=%3Cproquest_sprin%3E2918050891%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p72x-7fa5ddc46380b87bc978bd493e5fd46554fa47fa83335bcbf84593f8554f0c9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918050891&rft_id=info:pmid/&rfr_iscdi=true