Loading…
A semantic frame-based intelligent agent for topic detection
Detecting the topic of documents can help readers construct the background of the topic and facilitate document comprehension. In this paper, we propose a semantic frame-based topic detection (SFTD) that simulates such process in human perception. We take advantage of multiple knowledge sources and...
Saved in:
Published in: | Soft computing (Berlin, Germany) Germany), 2017-01, Vol.21 (2), p.391-401 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Detecting the topic of documents can help readers construct the background of the topic and facilitate document comprehension. In this paper, we propose a semantic frame-based topic detection (SFTD) that simulates such process in human perception. We take advantage of multiple knowledge sources and extracted discriminative patterns from documents through a highly automated, knowledge-supported frame generation and matching mechanisms. Using a Chinese news corpus containing over 111,000 news articles, we provide a comprehensive performance evaluation which demonstrates that our novel approach can effectively detect the topic of a document by exploiting the syntactic structures, semantic association, and the context within the text. Experimental results show that SFTD is comparable to other well-known topic detection methods. |
---|---|
ISSN: | 1432-7643 1433-7479 |
DOI: | 10.1007/s00500-015-1695-4 |