Loading…

Electrospinning of poly (3-hydroxybutyric acid) and gelatin blended thin films: fabrication, characterization, and application in skin regeneration

A tissue engineering scaffold should mimic the structure and biological function of native extracellular matrix proteins. Electrospinning is a simple and versatile method to produce ultrathin fibers for tissue engineering. Blended submicron fibers of poly (3-hydroxybutyric acid) and gelatin were ele...

Full description

Saved in:
Bibliographic Details
Published in:Polymer bulletin (Berlin, Germany) Germany), 2013-08, Vol.70 (8), p.2337-2358
Main Authors: Nagiah, Naveen, Madhavi, Lakshmi, Anitha, R., Srinivasan, Natarajan Tirupattur, Sivagnanam, Uma Tirichurapalli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-533e6d8b723ca9643ad74a5c092f3a78e2b714e3f3d849397939f64f0933cf723
cites cdi_FETCH-LOGICAL-c449t-533e6d8b723ca9643ad74a5c092f3a78e2b714e3f3d849397939f64f0933cf723
container_end_page 2358
container_issue 8
container_start_page 2337
container_title Polymer bulletin (Berlin, Germany)
container_volume 70
creator Nagiah, Naveen
Madhavi, Lakshmi
Anitha, R.
Srinivasan, Natarajan Tirupattur
Sivagnanam, Uma Tirichurapalli
description A tissue engineering scaffold should mimic the structure and biological function of native extracellular matrix proteins. Electrospinning is a simple and versatile method to produce ultrathin fibers for tissue engineering. Blended submicron fibers of poly (3-hydroxybutyric acid) and gelatin were electrospun using 1,1,1,3,3,3 hexafluoro-2-propanol as solvent. Cross linking of fibers was achieved using glutaraldehyde, and the resultant fibers were tested and analyzed using scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, and Fourier transformed infrared spectroscopy (FTIR).The fibers were found to exhibit good tensile strength. Degradation studies were performed and analyzed using SEM and FTIR and proved the stability of fibers for tissue engineering applications. The fibrous scaffold supported the growth and rapid proliferation of human dermal fibroblasts and keratinocytes with normal morphology, thus proving its reliability in using it as a potential scaffold for skin regeneration.
doi_str_mv 10.1007/s00289-013-0956-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918073255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918073255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-533e6d8b723ca9643ad74a5c092f3a78e2b714e3f3d849397939f64f0933cf723</originalsourceid><addsrcrecordid>eNp1UMtKBDEQDKLg-vgAbwERFIzmMZNMvImsD1jwoueQySS70TEzJrPg-Bv-sFl30ZOHdOjuquruAuCI4AuCsbhMGNNKIkwYwrLkiG-BCSkYR7Qo5DaYYCIwwhWTu2AvpRecc87JBHxNW2uG2KXeh-DDHHYO9l07wlOGFmMTu4-xXg5j9AZq45szqEMD57bVgw-wbm1obAOHRU6cb9_SFXS6zuDc7sI5NAsdtRls9J-byoqu-77dQGAmptccop3bYONP8QDsON0me7j598Hz7fTp5h7NHu8ebq5nyOSbBlQyZnlT1YIyoyUvmG5EoUuDJXVMi8rSWpDCMseaqpBMivwcLxyWjBmXWfvgeK3bx-59adOgXrplDHmkopJUWDBalhlF1iiTXUrROtVH_6bjqAhWK-_V2nuVvVcr7xXPnJONsk5Gty7qYHz6JVJRVhXmqw3oGpdyK8xt_Nvgf_Fv1eKVuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918073255</pqid></control><display><type>article</type><title>Electrospinning of poly (3-hydroxybutyric acid) and gelatin blended thin films: fabrication, characterization, and application in skin regeneration</title><source>Springer Nature</source><creator>Nagiah, Naveen ; Madhavi, Lakshmi ; Anitha, R. ; Srinivasan, Natarajan Tirupattur ; Sivagnanam, Uma Tirichurapalli</creator><creatorcontrib>Nagiah, Naveen ; Madhavi, Lakshmi ; Anitha, R. ; Srinivasan, Natarajan Tirupattur ; Sivagnanam, Uma Tirichurapalli</creatorcontrib><description>A tissue engineering scaffold should mimic the structure and biological function of native extracellular matrix proteins. Electrospinning is a simple and versatile method to produce ultrathin fibers for tissue engineering. Blended submicron fibers of poly (3-hydroxybutyric acid) and gelatin were electrospun using 1,1,1,3,3,3 hexafluoro-2-propanol as solvent. Cross linking of fibers was achieved using glutaraldehyde, and the resultant fibers were tested and analyzed using scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, and Fourier transformed infrared spectroscopy (FTIR).The fibers were found to exhibit good tensile strength. Degradation studies were performed and analyzed using SEM and FTIR and proved the stability of fibers for tissue engineering applications. The fibrous scaffold supported the growth and rapid proliferation of human dermal fibroblasts and keratinocytes with normal morphology, thus proving its reliability in using it as a potential scaffold for skin regeneration.</description><identifier>ISSN: 0170-0839</identifier><identifier>EISSN: 1436-2449</identifier><identifier>DOI: 10.1007/s00289-013-0956-6</identifier><identifier>CODEN: POBUDR</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acids ; Aluminum ; Applied sciences ; Biocompatibility ; Biological and medical sciences ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Crosslinking ; Electrospinning ; Exact sciences and technology ; Extracellular matrix ; Fibers ; Fibers and threads ; Fibroblasts ; Forms of application and semi-finished materials ; Fourier transforms ; Gelatin ; Infrared analysis ; Infrared spectroscopy ; Medical sciences ; Membranes ; Organic Chemistry ; Original Paper ; Physical Chemistry ; Polymer industry, paints, wood ; Polymer Sciences ; Polymers ; Regeneration ; Scaffolds ; Scanning electron microscopy ; Soft and Granular Matter ; Spectrum analysis ; Stability analysis ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology of polymers ; Technology. Biomaterials. Equipments ; Tensile strength ; Thermogravimetric analysis ; Thin films ; Tissue engineering</subject><ispartof>Polymer bulletin (Berlin, Germany), 2013-08, Vol.70 (8), p.2337-2358</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-533e6d8b723ca9643ad74a5c092f3a78e2b714e3f3d849397939f64f0933cf723</citedby><cites>FETCH-LOGICAL-c449t-533e6d8b723ca9643ad74a5c092f3a78e2b714e3f3d849397939f64f0933cf723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27588062$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagiah, Naveen</creatorcontrib><creatorcontrib>Madhavi, Lakshmi</creatorcontrib><creatorcontrib>Anitha, R.</creatorcontrib><creatorcontrib>Srinivasan, Natarajan Tirupattur</creatorcontrib><creatorcontrib>Sivagnanam, Uma Tirichurapalli</creatorcontrib><title>Electrospinning of poly (3-hydroxybutyric acid) and gelatin blended thin films: fabrication, characterization, and application in skin regeneration</title><title>Polymer bulletin (Berlin, Germany)</title><addtitle>Polym. Bull</addtitle><description>A tissue engineering scaffold should mimic the structure and biological function of native extracellular matrix proteins. Electrospinning is a simple and versatile method to produce ultrathin fibers for tissue engineering. Blended submicron fibers of poly (3-hydroxybutyric acid) and gelatin were electrospun using 1,1,1,3,3,3 hexafluoro-2-propanol as solvent. Cross linking of fibers was achieved using glutaraldehyde, and the resultant fibers were tested and analyzed using scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, and Fourier transformed infrared spectroscopy (FTIR).The fibers were found to exhibit good tensile strength. Degradation studies were performed and analyzed using SEM and FTIR and proved the stability of fibers for tissue engineering applications. The fibrous scaffold supported the growth and rapid proliferation of human dermal fibroblasts and keratinocytes with normal morphology, thus proving its reliability in using it as a potential scaffold for skin regeneration.</description><subject>Acids</subject><subject>Aluminum</subject><subject>Applied sciences</subject><subject>Biocompatibility</subject><subject>Biological and medical sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Crosslinking</subject><subject>Electrospinning</subject><subject>Exact sciences and technology</subject><subject>Extracellular matrix</subject><subject>Fibers</subject><subject>Fibers and threads</subject><subject>Fibroblasts</subject><subject>Forms of application and semi-finished materials</subject><subject>Fourier transforms</subject><subject>Gelatin</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Medical sciences</subject><subject>Membranes</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Polymer industry, paints, wood</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Scanning electron microscopy</subject><subject>Soft and Granular Matter</subject><subject>Spectrum analysis</subject><subject>Stability analysis</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology of polymers</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Tensile strength</subject><subject>Thermogravimetric analysis</subject><subject>Thin films</subject><subject>Tissue engineering</subject><issn>0170-0839</issn><issn>1436-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKBDEQDKLg-vgAbwERFIzmMZNMvImsD1jwoueQySS70TEzJrPg-Bv-sFl30ZOHdOjuquruAuCI4AuCsbhMGNNKIkwYwrLkiG-BCSkYR7Qo5DaYYCIwwhWTu2AvpRecc87JBHxNW2uG2KXeh-DDHHYO9l07wlOGFmMTu4-xXg5j9AZq45szqEMD57bVgw-wbm1obAOHRU6cb9_SFXS6zuDc7sI5NAsdtRls9J-byoqu-77dQGAmptccop3bYONP8QDsON0me7j598Hz7fTp5h7NHu8ebq5nyOSbBlQyZnlT1YIyoyUvmG5EoUuDJXVMi8rSWpDCMseaqpBMivwcLxyWjBmXWfvgeK3bx-59adOgXrplDHmkopJUWDBalhlF1iiTXUrROtVH_6bjqAhWK-_V2nuVvVcr7xXPnJONsk5Gty7qYHz6JVJRVhXmqw3oGpdyK8xt_Nvgf_Fv1eKVuw</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Nagiah, Naveen</creator><creator>Madhavi, Lakshmi</creator><creator>Anitha, R.</creator><creator>Srinivasan, Natarajan Tirupattur</creator><creator>Sivagnanam, Uma Tirichurapalli</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20130801</creationdate><title>Electrospinning of poly (3-hydroxybutyric acid) and gelatin blended thin films: fabrication, characterization, and application in skin regeneration</title><author>Nagiah, Naveen ; Madhavi, Lakshmi ; Anitha, R. ; Srinivasan, Natarajan Tirupattur ; Sivagnanam, Uma Tirichurapalli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-533e6d8b723ca9643ad74a5c092f3a78e2b714e3f3d849397939f64f0933cf723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acids</topic><topic>Aluminum</topic><topic>Applied sciences</topic><topic>Biocompatibility</topic><topic>Biological and medical sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Crosslinking</topic><topic>Electrospinning</topic><topic>Exact sciences and technology</topic><topic>Extracellular matrix</topic><topic>Fibers</topic><topic>Fibers and threads</topic><topic>Fibroblasts</topic><topic>Forms of application and semi-finished materials</topic><topic>Fourier transforms</topic><topic>Gelatin</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Medical sciences</topic><topic>Membranes</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Polymer industry, paints, wood</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Scanning electron microscopy</topic><topic>Soft and Granular Matter</topic><topic>Spectrum analysis</topic><topic>Stability analysis</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology of polymers</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Tensile strength</topic><topic>Thermogravimetric analysis</topic><topic>Thin films</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagiah, Naveen</creatorcontrib><creatorcontrib>Madhavi, Lakshmi</creatorcontrib><creatorcontrib>Anitha, R.</creatorcontrib><creatorcontrib>Srinivasan, Natarajan Tirupattur</creatorcontrib><creatorcontrib>Sivagnanam, Uma Tirichurapalli</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Polymer bulletin (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagiah, Naveen</au><au>Madhavi, Lakshmi</au><au>Anitha, R.</au><au>Srinivasan, Natarajan Tirupattur</au><au>Sivagnanam, Uma Tirichurapalli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospinning of poly (3-hydroxybutyric acid) and gelatin blended thin films: fabrication, characterization, and application in skin regeneration</atitle><jtitle>Polymer bulletin (Berlin, Germany)</jtitle><stitle>Polym. Bull</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>70</volume><issue>8</issue><spage>2337</spage><epage>2358</epage><pages>2337-2358</pages><issn>0170-0839</issn><eissn>1436-2449</eissn><coden>POBUDR</coden><abstract>A tissue engineering scaffold should mimic the structure and biological function of native extracellular matrix proteins. Electrospinning is a simple and versatile method to produce ultrathin fibers for tissue engineering. Blended submicron fibers of poly (3-hydroxybutyric acid) and gelatin were electrospun using 1,1,1,3,3,3 hexafluoro-2-propanol as solvent. Cross linking of fibers was achieved using glutaraldehyde, and the resultant fibers were tested and analyzed using scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, and Fourier transformed infrared spectroscopy (FTIR).The fibers were found to exhibit good tensile strength. Degradation studies were performed and analyzed using SEM and FTIR and proved the stability of fibers for tissue engineering applications. The fibrous scaffold supported the growth and rapid proliferation of human dermal fibroblasts and keratinocytes with normal morphology, thus proving its reliability in using it as a potential scaffold for skin regeneration.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00289-013-0956-6</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-0839
ispartof Polymer bulletin (Berlin, Germany), 2013-08, Vol.70 (8), p.2337-2358
issn 0170-0839
1436-2449
language eng
recordid cdi_proquest_journals_2918073255
source Springer Nature
subjects Acids
Aluminum
Applied sciences
Biocompatibility
Biological and medical sciences
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Complex Fluids and Microfluidics
Crosslinking
Electrospinning
Exact sciences and technology
Extracellular matrix
Fibers
Fibers and threads
Fibroblasts
Forms of application and semi-finished materials
Fourier transforms
Gelatin
Infrared analysis
Infrared spectroscopy
Medical sciences
Membranes
Organic Chemistry
Original Paper
Physical Chemistry
Polymer industry, paints, wood
Polymer Sciences
Polymers
Regeneration
Scaffolds
Scanning electron microscopy
Soft and Granular Matter
Spectrum analysis
Stability analysis
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology of polymers
Technology. Biomaterials. Equipments
Tensile strength
Thermogravimetric analysis
Thin films
Tissue engineering
title Electrospinning of poly (3-hydroxybutyric acid) and gelatin blended thin films: fabrication, characterization, and application in skin regeneration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospinning%20of%20poly%20(3-hydroxybutyric%20acid)%20and%20gelatin%20blended%20thin%20films:%20fabrication,%20characterization,%20and%20application%20in%20skin%20regeneration&rft.jtitle=Polymer%20bulletin%20(Berlin,%20Germany)&rft.au=Nagiah,%20Naveen&rft.date=2013-08-01&rft.volume=70&rft.issue=8&rft.spage=2337&rft.epage=2358&rft.pages=2337-2358&rft.issn=0170-0839&rft.eissn=1436-2449&rft.coden=POBUDR&rft_id=info:doi/10.1007/s00289-013-0956-6&rft_dat=%3Cproquest_cross%3E2918073255%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-533e6d8b723ca9643ad74a5c092f3a78e2b714e3f3d849397939f64f0933cf723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918073255&rft_id=info:pmid/&rfr_iscdi=true