Loading…
Electrospinning of poly (3-hydroxybutyric acid) and gelatin blended thin films: fabrication, characterization, and application in skin regeneration
A tissue engineering scaffold should mimic the structure and biological function of native extracellular matrix proteins. Electrospinning is a simple and versatile method to produce ultrathin fibers for tissue engineering. Blended submicron fibers of poly (3-hydroxybutyric acid) and gelatin were ele...
Saved in:
Published in: | Polymer bulletin (Berlin, Germany) Germany), 2013-08, Vol.70 (8), p.2337-2358 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c449t-533e6d8b723ca9643ad74a5c092f3a78e2b714e3f3d849397939f64f0933cf723 |
---|---|
cites | cdi_FETCH-LOGICAL-c449t-533e6d8b723ca9643ad74a5c092f3a78e2b714e3f3d849397939f64f0933cf723 |
container_end_page | 2358 |
container_issue | 8 |
container_start_page | 2337 |
container_title | Polymer bulletin (Berlin, Germany) |
container_volume | 70 |
creator | Nagiah, Naveen Madhavi, Lakshmi Anitha, R. Srinivasan, Natarajan Tirupattur Sivagnanam, Uma Tirichurapalli |
description | A tissue engineering scaffold should mimic the structure and biological function of native extracellular matrix proteins. Electrospinning is a simple and versatile method to produce ultrathin fibers for tissue engineering. Blended submicron fibers of poly (3-hydroxybutyric acid) and gelatin were electrospun using 1,1,1,3,3,3 hexafluoro-2-propanol as solvent. Cross linking of fibers was achieved using glutaraldehyde, and the resultant fibers were tested and analyzed using scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, and Fourier transformed infrared spectroscopy (FTIR).The fibers were found to exhibit good tensile strength. Degradation studies were performed and analyzed using SEM and FTIR and proved the stability of fibers for tissue engineering applications. The fibrous scaffold supported the growth and rapid proliferation of human dermal fibroblasts and keratinocytes with normal morphology, thus proving its reliability in using it as a potential scaffold for skin regeneration. |
doi_str_mv | 10.1007/s00289-013-0956-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918073255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918073255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-533e6d8b723ca9643ad74a5c092f3a78e2b714e3f3d849397939f64f0933cf723</originalsourceid><addsrcrecordid>eNp1UMtKBDEQDKLg-vgAbwERFIzmMZNMvImsD1jwoueQySS70TEzJrPg-Bv-sFl30ZOHdOjuquruAuCI4AuCsbhMGNNKIkwYwrLkiG-BCSkYR7Qo5DaYYCIwwhWTu2AvpRecc87JBHxNW2uG2KXeh-DDHHYO9l07wlOGFmMTu4-xXg5j9AZq45szqEMD57bVgw-wbm1obAOHRU6cb9_SFXS6zuDc7sI5NAsdtRls9J-byoqu-77dQGAmptccop3bYONP8QDsON0me7j598Hz7fTp5h7NHu8ebq5nyOSbBlQyZnlT1YIyoyUvmG5EoUuDJXVMi8rSWpDCMseaqpBMivwcLxyWjBmXWfvgeK3bx-59adOgXrplDHmkopJUWDBalhlF1iiTXUrROtVH_6bjqAhWK-_V2nuVvVcr7xXPnJONsk5Gty7qYHz6JVJRVhXmqw3oGpdyK8xt_Nvgf_Fv1eKVuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918073255</pqid></control><display><type>article</type><title>Electrospinning of poly (3-hydroxybutyric acid) and gelatin blended thin films: fabrication, characterization, and application in skin regeneration</title><source>Springer Nature</source><creator>Nagiah, Naveen ; Madhavi, Lakshmi ; Anitha, R. ; Srinivasan, Natarajan Tirupattur ; Sivagnanam, Uma Tirichurapalli</creator><creatorcontrib>Nagiah, Naveen ; Madhavi, Lakshmi ; Anitha, R. ; Srinivasan, Natarajan Tirupattur ; Sivagnanam, Uma Tirichurapalli</creatorcontrib><description>A tissue engineering scaffold should mimic the structure and biological function of native extracellular matrix proteins. Electrospinning is a simple and versatile method to produce ultrathin fibers for tissue engineering. Blended submicron fibers of poly (3-hydroxybutyric acid) and gelatin were electrospun using 1,1,1,3,3,3 hexafluoro-2-propanol as solvent. Cross linking of fibers was achieved using glutaraldehyde, and the resultant fibers were tested and analyzed using scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, and Fourier transformed infrared spectroscopy (FTIR).The fibers were found to exhibit good tensile strength. Degradation studies were performed and analyzed using SEM and FTIR and proved the stability of fibers for tissue engineering applications. The fibrous scaffold supported the growth and rapid proliferation of human dermal fibroblasts and keratinocytes with normal morphology, thus proving its reliability in using it as a potential scaffold for skin regeneration.</description><identifier>ISSN: 0170-0839</identifier><identifier>EISSN: 1436-2449</identifier><identifier>DOI: 10.1007/s00289-013-0956-6</identifier><identifier>CODEN: POBUDR</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acids ; Aluminum ; Applied sciences ; Biocompatibility ; Biological and medical sciences ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Crosslinking ; Electrospinning ; Exact sciences and technology ; Extracellular matrix ; Fibers ; Fibers and threads ; Fibroblasts ; Forms of application and semi-finished materials ; Fourier transforms ; Gelatin ; Infrared analysis ; Infrared spectroscopy ; Medical sciences ; Membranes ; Organic Chemistry ; Original Paper ; Physical Chemistry ; Polymer industry, paints, wood ; Polymer Sciences ; Polymers ; Regeneration ; Scaffolds ; Scanning electron microscopy ; Soft and Granular Matter ; Spectrum analysis ; Stability analysis ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology of polymers ; Technology. Biomaterials. Equipments ; Tensile strength ; Thermogravimetric analysis ; Thin films ; Tissue engineering</subject><ispartof>Polymer bulletin (Berlin, Germany), 2013-08, Vol.70 (8), p.2337-2358</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-533e6d8b723ca9643ad74a5c092f3a78e2b714e3f3d849397939f64f0933cf723</citedby><cites>FETCH-LOGICAL-c449t-533e6d8b723ca9643ad74a5c092f3a78e2b714e3f3d849397939f64f0933cf723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27588062$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagiah, Naveen</creatorcontrib><creatorcontrib>Madhavi, Lakshmi</creatorcontrib><creatorcontrib>Anitha, R.</creatorcontrib><creatorcontrib>Srinivasan, Natarajan Tirupattur</creatorcontrib><creatorcontrib>Sivagnanam, Uma Tirichurapalli</creatorcontrib><title>Electrospinning of poly (3-hydroxybutyric acid) and gelatin blended thin films: fabrication, characterization, and application in skin regeneration</title><title>Polymer bulletin (Berlin, Germany)</title><addtitle>Polym. Bull</addtitle><description>A tissue engineering scaffold should mimic the structure and biological function of native extracellular matrix proteins. Electrospinning is a simple and versatile method to produce ultrathin fibers for tissue engineering. Blended submicron fibers of poly (3-hydroxybutyric acid) and gelatin were electrospun using 1,1,1,3,3,3 hexafluoro-2-propanol as solvent. Cross linking of fibers was achieved using glutaraldehyde, and the resultant fibers were tested and analyzed using scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, and Fourier transformed infrared spectroscopy (FTIR).The fibers were found to exhibit good tensile strength. Degradation studies were performed and analyzed using SEM and FTIR and proved the stability of fibers for tissue engineering applications. The fibrous scaffold supported the growth and rapid proliferation of human dermal fibroblasts and keratinocytes with normal morphology, thus proving its reliability in using it as a potential scaffold for skin regeneration.</description><subject>Acids</subject><subject>Aluminum</subject><subject>Applied sciences</subject><subject>Biocompatibility</subject><subject>Biological and medical sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Crosslinking</subject><subject>Electrospinning</subject><subject>Exact sciences and technology</subject><subject>Extracellular matrix</subject><subject>Fibers</subject><subject>Fibers and threads</subject><subject>Fibroblasts</subject><subject>Forms of application and semi-finished materials</subject><subject>Fourier transforms</subject><subject>Gelatin</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Medical sciences</subject><subject>Membranes</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Polymer industry, paints, wood</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Scanning electron microscopy</subject><subject>Soft and Granular Matter</subject><subject>Spectrum analysis</subject><subject>Stability analysis</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology of polymers</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Tensile strength</subject><subject>Thermogravimetric analysis</subject><subject>Thin films</subject><subject>Tissue engineering</subject><issn>0170-0839</issn><issn>1436-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKBDEQDKLg-vgAbwERFIzmMZNMvImsD1jwoueQySS70TEzJrPg-Bv-sFl30ZOHdOjuquruAuCI4AuCsbhMGNNKIkwYwrLkiG-BCSkYR7Qo5DaYYCIwwhWTu2AvpRecc87JBHxNW2uG2KXeh-DDHHYO9l07wlOGFmMTu4-xXg5j9AZq45szqEMD57bVgw-wbm1obAOHRU6cb9_SFXS6zuDc7sI5NAsdtRls9J-byoqu-77dQGAmptccop3bYONP8QDsON0me7j598Hz7fTp5h7NHu8ebq5nyOSbBlQyZnlT1YIyoyUvmG5EoUuDJXVMi8rSWpDCMseaqpBMivwcLxyWjBmXWfvgeK3bx-59adOgXrplDHmkopJUWDBalhlF1iiTXUrROtVH_6bjqAhWK-_V2nuVvVcr7xXPnJONsk5Gty7qYHz6JVJRVhXmqw3oGpdyK8xt_Nvgf_Fv1eKVuw</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Nagiah, Naveen</creator><creator>Madhavi, Lakshmi</creator><creator>Anitha, R.</creator><creator>Srinivasan, Natarajan Tirupattur</creator><creator>Sivagnanam, Uma Tirichurapalli</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20130801</creationdate><title>Electrospinning of poly (3-hydroxybutyric acid) and gelatin blended thin films: fabrication, characterization, and application in skin regeneration</title><author>Nagiah, Naveen ; Madhavi, Lakshmi ; Anitha, R. ; Srinivasan, Natarajan Tirupattur ; Sivagnanam, Uma Tirichurapalli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-533e6d8b723ca9643ad74a5c092f3a78e2b714e3f3d849397939f64f0933cf723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acids</topic><topic>Aluminum</topic><topic>Applied sciences</topic><topic>Biocompatibility</topic><topic>Biological and medical sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Crosslinking</topic><topic>Electrospinning</topic><topic>Exact sciences and technology</topic><topic>Extracellular matrix</topic><topic>Fibers</topic><topic>Fibers and threads</topic><topic>Fibroblasts</topic><topic>Forms of application and semi-finished materials</topic><topic>Fourier transforms</topic><topic>Gelatin</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Medical sciences</topic><topic>Membranes</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Polymer industry, paints, wood</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Scanning electron microscopy</topic><topic>Soft and Granular Matter</topic><topic>Spectrum analysis</topic><topic>Stability analysis</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology of polymers</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Tensile strength</topic><topic>Thermogravimetric analysis</topic><topic>Thin films</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagiah, Naveen</creatorcontrib><creatorcontrib>Madhavi, Lakshmi</creatorcontrib><creatorcontrib>Anitha, R.</creatorcontrib><creatorcontrib>Srinivasan, Natarajan Tirupattur</creatorcontrib><creatorcontrib>Sivagnanam, Uma Tirichurapalli</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Polymer bulletin (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagiah, Naveen</au><au>Madhavi, Lakshmi</au><au>Anitha, R.</au><au>Srinivasan, Natarajan Tirupattur</au><au>Sivagnanam, Uma Tirichurapalli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospinning of poly (3-hydroxybutyric acid) and gelatin blended thin films: fabrication, characterization, and application in skin regeneration</atitle><jtitle>Polymer bulletin (Berlin, Germany)</jtitle><stitle>Polym. Bull</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>70</volume><issue>8</issue><spage>2337</spage><epage>2358</epage><pages>2337-2358</pages><issn>0170-0839</issn><eissn>1436-2449</eissn><coden>POBUDR</coden><abstract>A tissue engineering scaffold should mimic the structure and biological function of native extracellular matrix proteins. Electrospinning is a simple and versatile method to produce ultrathin fibers for tissue engineering. Blended submicron fibers of poly (3-hydroxybutyric acid) and gelatin were electrospun using 1,1,1,3,3,3 hexafluoro-2-propanol as solvent. Cross linking of fibers was achieved using glutaraldehyde, and the resultant fibers were tested and analyzed using scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, and Fourier transformed infrared spectroscopy (FTIR).The fibers were found to exhibit good tensile strength. Degradation studies were performed and analyzed using SEM and FTIR and proved the stability of fibers for tissue engineering applications. The fibrous scaffold supported the growth and rapid proliferation of human dermal fibroblasts and keratinocytes with normal morphology, thus proving its reliability in using it as a potential scaffold for skin regeneration.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00289-013-0956-6</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-0839 |
ispartof | Polymer bulletin (Berlin, Germany), 2013-08, Vol.70 (8), p.2337-2358 |
issn | 0170-0839 1436-2449 |
language | eng |
recordid | cdi_proquest_journals_2918073255 |
source | Springer Nature |
subjects | Acids Aluminum Applied sciences Biocompatibility Biological and medical sciences Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Complex Fluids and Microfluidics Crosslinking Electrospinning Exact sciences and technology Extracellular matrix Fibers Fibers and threads Fibroblasts Forms of application and semi-finished materials Fourier transforms Gelatin Infrared analysis Infrared spectroscopy Medical sciences Membranes Organic Chemistry Original Paper Physical Chemistry Polymer industry, paints, wood Polymer Sciences Polymers Regeneration Scaffolds Scanning electron microscopy Soft and Granular Matter Spectrum analysis Stability analysis Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Technology of polymers Technology. Biomaterials. Equipments Tensile strength Thermogravimetric analysis Thin films Tissue engineering |
title | Electrospinning of poly (3-hydroxybutyric acid) and gelatin blended thin films: fabrication, characterization, and application in skin regeneration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospinning%20of%20poly%20(3-hydroxybutyric%20acid)%20and%20gelatin%20blended%20thin%20films:%20fabrication,%20characterization,%20and%20application%20in%20skin%20regeneration&rft.jtitle=Polymer%20bulletin%20(Berlin,%20Germany)&rft.au=Nagiah,%20Naveen&rft.date=2013-08-01&rft.volume=70&rft.issue=8&rft.spage=2337&rft.epage=2358&rft.pages=2337-2358&rft.issn=0170-0839&rft.eissn=1436-2449&rft.coden=POBUDR&rft_id=info:doi/10.1007/s00289-013-0956-6&rft_dat=%3Cproquest_cross%3E2918073255%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-533e6d8b723ca9643ad74a5c092f3a78e2b714e3f3d849397939f64f0933cf723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918073255&rft_id=info:pmid/&rfr_iscdi=true |