Loading…

A novel multi-graph framework for salient object detection

Graph-based methods have been widely adopted for predicting the most attractive region in an image. Most of the existing graph-based methods only utilize single graph to describe the image information, and thus cannot adapt for complex scenes. In this paper, a novel multi-graph framework for salient...

Full description

Saved in:
Bibliographic Details
Published in:The Visual computer 2019-11, Vol.35 (11), p.1683-1699
Main Authors: Lu, Ye, Zhou, Kedong, Wu, Xiyin, Gong, Penghan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-65491c9990e5fef58d57d1fd6de3f38ac97835ba8306c7f54efe125645973e353
cites cdi_FETCH-LOGICAL-c319t-65491c9990e5fef58d57d1fd6de3f38ac97835ba8306c7f54efe125645973e353
container_end_page 1699
container_issue 11
container_start_page 1683
container_title The Visual computer
container_volume 35
creator Lu, Ye
Zhou, Kedong
Wu, Xiyin
Gong, Penghan
description Graph-based methods have been widely adopted for predicting the most attractive region in an image. Most of the existing graph-based methods only utilize single graph to describe the image information, and thus cannot adapt for complex scenes. In this paper, a novel multi-graph framework for salient object detection is proposed. The proposed method is divided into three steps. Firstly, an image is divided into superpixels and described as a multi-graph, where superpixels are represented as nodes and their information is computed by color space and location space. Secondly, the multiple graphs are combined into a novel multi-graph-based manifold ranking propagation framework to obtain a coarse map. Finally, a map refinement model is developed to improve the quality of the coarse map. Experimental results on four challenging datasets show that the proposed method performs favorably against the state-of-the-art salient object detection methods.
doi_str_mv 10.1007/s00371-019-01637-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918108071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918108071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-65491c9990e5fef58d57d1fd6de3f38ac97835ba8306c7f54efe125645973e353</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuC62hO0jSJu2HwBgNudB0y7cnYsdOMSav49kYruHNx-DnwX-Aj5BzYJTCmrhJjQgFlYPJVQlF-QGZQCk65AHlIZgyUplxpc0xOUtqy_KvSzMj1oujDO3bFbuyGlm6i278UProdfoT4WvgQi-S6FvuhCOst1kPR4JClDf0pOfKuS3j2q3PyfHvztLynq8e7h-ViRWsBZqCVLA3UxhiG0qOXupGqAd9UDQovtKuN0kKunRasqpWXJXoELqtSGiVQSDEnF1PvPoa3EdNgt2GMfZ603IAGppmC7OKTq44hpYje7mO7c_HTArPfjOzEyGZG9oeR5TkkplDK5n6D8a_6n9QXtNtojA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918108071</pqid></control><display><type>article</type><title>A novel multi-graph framework for salient object detection</title><source>Springer Link</source><creator>Lu, Ye ; Zhou, Kedong ; Wu, Xiyin ; Gong, Penghan</creator><creatorcontrib>Lu, Ye ; Zhou, Kedong ; Wu, Xiyin ; Gong, Penghan</creatorcontrib><description>Graph-based methods have been widely adopted for predicting the most attractive region in an image. Most of the existing graph-based methods only utilize single graph to describe the image information, and thus cannot adapt for complex scenes. In this paper, a novel multi-graph framework for salient object detection is proposed. The proposed method is divided into three steps. Firstly, an image is divided into superpixels and described as a multi-graph, where superpixels are represented as nodes and their information is computed by color space and location space. Secondly, the multiple graphs are combined into a novel multi-graph-based manifold ranking propagation framework to obtain a coarse map. Finally, a map refinement model is developed to improve the quality of the coarse map. Experimental results on four challenging datasets show that the proposed method performs favorably against the state-of-the-art salient object detection methods.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-019-01637-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Computer Graphics ; Computer Science ; Deep learning ; Graphical representations ; Image Processing and Computer Vision ; Image retrieval ; Methods ; Object recognition ; Original Article ; Propagation ; Salience ; Seeds ; Semantics</subject><ispartof>The Visual computer, 2019-11, Vol.35 (11), p.1683-1699</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-65491c9990e5fef58d57d1fd6de3f38ac97835ba8306c7f54efe125645973e353</citedby><cites>FETCH-LOGICAL-c319t-65491c9990e5fef58d57d1fd6de3f38ac97835ba8306c7f54efe125645973e353</cites><orcidid>0000-0001-7504-3599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lu, Ye</creatorcontrib><creatorcontrib>Zhou, Kedong</creatorcontrib><creatorcontrib>Wu, Xiyin</creatorcontrib><creatorcontrib>Gong, Penghan</creatorcontrib><title>A novel multi-graph framework for salient object detection</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Graph-based methods have been widely adopted for predicting the most attractive region in an image. Most of the existing graph-based methods only utilize single graph to describe the image information, and thus cannot adapt for complex scenes. In this paper, a novel multi-graph framework for salient object detection is proposed. The proposed method is divided into three steps. Firstly, an image is divided into superpixels and described as a multi-graph, where superpixels are represented as nodes and their information is computed by color space and location space. Secondly, the multiple graphs are combined into a novel multi-graph-based manifold ranking propagation framework to obtain a coarse map. Finally, a map refinement model is developed to improve the quality of the coarse map. Experimental results on four challenging datasets show that the proposed method performs favorably against the state-of-the-art salient object detection methods.</description><subject>Artificial Intelligence</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Graphical representations</subject><subject>Image Processing and Computer Vision</subject><subject>Image retrieval</subject><subject>Methods</subject><subject>Object recognition</subject><subject>Original Article</subject><subject>Propagation</subject><subject>Salience</subject><subject>Seeds</subject><subject>Semantics</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuC62hO0jSJu2HwBgNudB0y7cnYsdOMSav49kYruHNx-DnwX-Aj5BzYJTCmrhJjQgFlYPJVQlF-QGZQCk65AHlIZgyUplxpc0xOUtqy_KvSzMj1oujDO3bFbuyGlm6i278UProdfoT4WvgQi-S6FvuhCOst1kPR4JClDf0pOfKuS3j2q3PyfHvztLynq8e7h-ViRWsBZqCVLA3UxhiG0qOXupGqAd9UDQovtKuN0kKunRasqpWXJXoELqtSGiVQSDEnF1PvPoa3EdNgt2GMfZ603IAGppmC7OKTq44hpYje7mO7c_HTArPfjOzEyGZG9oeR5TkkplDK5n6D8a_6n9QXtNtojA</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Lu, Ye</creator><creator>Zhou, Kedong</creator><creator>Wu, Xiyin</creator><creator>Gong, Penghan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-7504-3599</orcidid></search><sort><creationdate>20191101</creationdate><title>A novel multi-graph framework for salient object detection</title><author>Lu, Ye ; Zhou, Kedong ; Wu, Xiyin ; Gong, Penghan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-65491c9990e5fef58d57d1fd6de3f38ac97835ba8306c7f54efe125645973e353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Graphical representations</topic><topic>Image Processing and Computer Vision</topic><topic>Image retrieval</topic><topic>Methods</topic><topic>Object recognition</topic><topic>Original Article</topic><topic>Propagation</topic><topic>Salience</topic><topic>Seeds</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Ye</creatorcontrib><creatorcontrib>Zhou, Kedong</creatorcontrib><creatorcontrib>Wu, Xiyin</creatorcontrib><creatorcontrib>Gong, Penghan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Ye</au><au>Zhou, Kedong</au><au>Wu, Xiyin</au><au>Gong, Penghan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel multi-graph framework for salient object detection</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>35</volume><issue>11</issue><spage>1683</spage><epage>1699</epage><pages>1683-1699</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Graph-based methods have been widely adopted for predicting the most attractive region in an image. Most of the existing graph-based methods only utilize single graph to describe the image information, and thus cannot adapt for complex scenes. In this paper, a novel multi-graph framework for salient object detection is proposed. The proposed method is divided into three steps. Firstly, an image is divided into superpixels and described as a multi-graph, where superpixels are represented as nodes and their information is computed by color space and location space. Secondly, the multiple graphs are combined into a novel multi-graph-based manifold ranking propagation framework to obtain a coarse map. Finally, a map refinement model is developed to improve the quality of the coarse map. Experimental results on four challenging datasets show that the proposed method performs favorably against the state-of-the-art salient object detection methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-019-01637-2</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7504-3599</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2019-11, Vol.35 (11), p.1683-1699
issn 0178-2789
1432-2315
language eng
recordid cdi_proquest_journals_2918108071
source Springer Link
subjects Artificial Intelligence
Computer Graphics
Computer Science
Deep learning
Graphical representations
Image Processing and Computer Vision
Image retrieval
Methods
Object recognition
Original Article
Propagation
Salience
Seeds
Semantics
title A novel multi-graph framework for salient object detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A34%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20multi-graph%20framework%20for%20salient%20object%20detection&rft.jtitle=The%20Visual%20computer&rft.au=Lu,%20Ye&rft.date=2019-11-01&rft.volume=35&rft.issue=11&rft.spage=1683&rft.epage=1699&rft.pages=1683-1699&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-019-01637-2&rft_dat=%3Cproquest_cross%3E2918108071%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-65491c9990e5fef58d57d1fd6de3f38ac97835ba8306c7f54efe125645973e353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918108071&rft_id=info:pmid/&rfr_iscdi=true