Loading…
A novel multi-graph framework for salient object detection
Graph-based methods have been widely adopted for predicting the most attractive region in an image. Most of the existing graph-based methods only utilize single graph to describe the image information, and thus cannot adapt for complex scenes. In this paper, a novel multi-graph framework for salient...
Saved in:
Published in: | The Visual computer 2019-11, Vol.35 (11), p.1683-1699 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-65491c9990e5fef58d57d1fd6de3f38ac97835ba8306c7f54efe125645973e353 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-65491c9990e5fef58d57d1fd6de3f38ac97835ba8306c7f54efe125645973e353 |
container_end_page | 1699 |
container_issue | 11 |
container_start_page | 1683 |
container_title | The Visual computer |
container_volume | 35 |
creator | Lu, Ye Zhou, Kedong Wu, Xiyin Gong, Penghan |
description | Graph-based methods have been widely adopted for predicting the most attractive region in an image. Most of the existing graph-based methods only utilize single graph to describe the image information, and thus cannot adapt for complex scenes. In this paper, a novel multi-graph framework for salient object detection is proposed. The proposed method is divided into three steps. Firstly, an image is divided into superpixels and described as a multi-graph, where superpixels are represented as nodes and their information is computed by color space and location space. Secondly, the multiple graphs are combined into a novel multi-graph-based manifold ranking propagation framework to obtain a coarse map. Finally, a map refinement model is developed to improve the quality of the coarse map. Experimental results on four challenging datasets show that the proposed method performs favorably against the state-of-the-art salient object detection methods. |
doi_str_mv | 10.1007/s00371-019-01637-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918108071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918108071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-65491c9990e5fef58d57d1fd6de3f38ac97835ba8306c7f54efe125645973e353</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuC62hO0jSJu2HwBgNudB0y7cnYsdOMSav49kYruHNx-DnwX-Aj5BzYJTCmrhJjQgFlYPJVQlF-QGZQCk65AHlIZgyUplxpc0xOUtqy_KvSzMj1oujDO3bFbuyGlm6i278UProdfoT4WvgQi-S6FvuhCOst1kPR4JClDf0pOfKuS3j2q3PyfHvztLynq8e7h-ViRWsBZqCVLA3UxhiG0qOXupGqAd9UDQovtKuN0kKunRasqpWXJXoELqtSGiVQSDEnF1PvPoa3EdNgt2GMfZ603IAGppmC7OKTq44hpYje7mO7c_HTArPfjOzEyGZG9oeR5TkkplDK5n6D8a_6n9QXtNtojA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918108071</pqid></control><display><type>article</type><title>A novel multi-graph framework for salient object detection</title><source>Springer Link</source><creator>Lu, Ye ; Zhou, Kedong ; Wu, Xiyin ; Gong, Penghan</creator><creatorcontrib>Lu, Ye ; Zhou, Kedong ; Wu, Xiyin ; Gong, Penghan</creatorcontrib><description>Graph-based methods have been widely adopted for predicting the most attractive region in an image. Most of the existing graph-based methods only utilize single graph to describe the image information, and thus cannot adapt for complex scenes. In this paper, a novel multi-graph framework for salient object detection is proposed. The proposed method is divided into three steps. Firstly, an image is divided into superpixels and described as a multi-graph, where superpixels are represented as nodes and their information is computed by color space and location space. Secondly, the multiple graphs are combined into a novel multi-graph-based manifold ranking propagation framework to obtain a coarse map. Finally, a map refinement model is developed to improve the quality of the coarse map. Experimental results on four challenging datasets show that the proposed method performs favorably against the state-of-the-art salient object detection methods.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-019-01637-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Computer Graphics ; Computer Science ; Deep learning ; Graphical representations ; Image Processing and Computer Vision ; Image retrieval ; Methods ; Object recognition ; Original Article ; Propagation ; Salience ; Seeds ; Semantics</subject><ispartof>The Visual computer, 2019-11, Vol.35 (11), p.1683-1699</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-65491c9990e5fef58d57d1fd6de3f38ac97835ba8306c7f54efe125645973e353</citedby><cites>FETCH-LOGICAL-c319t-65491c9990e5fef58d57d1fd6de3f38ac97835ba8306c7f54efe125645973e353</cites><orcidid>0000-0001-7504-3599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lu, Ye</creatorcontrib><creatorcontrib>Zhou, Kedong</creatorcontrib><creatorcontrib>Wu, Xiyin</creatorcontrib><creatorcontrib>Gong, Penghan</creatorcontrib><title>A novel multi-graph framework for salient object detection</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Graph-based methods have been widely adopted for predicting the most attractive region in an image. Most of the existing graph-based methods only utilize single graph to describe the image information, and thus cannot adapt for complex scenes. In this paper, a novel multi-graph framework for salient object detection is proposed. The proposed method is divided into three steps. Firstly, an image is divided into superpixels and described as a multi-graph, where superpixels are represented as nodes and their information is computed by color space and location space. Secondly, the multiple graphs are combined into a novel multi-graph-based manifold ranking propagation framework to obtain a coarse map. Finally, a map refinement model is developed to improve the quality of the coarse map. Experimental results on four challenging datasets show that the proposed method performs favorably against the state-of-the-art salient object detection methods.</description><subject>Artificial Intelligence</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Graphical representations</subject><subject>Image Processing and Computer Vision</subject><subject>Image retrieval</subject><subject>Methods</subject><subject>Object recognition</subject><subject>Original Article</subject><subject>Propagation</subject><subject>Salience</subject><subject>Seeds</subject><subject>Semantics</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuC62hO0jSJu2HwBgNudB0y7cnYsdOMSav49kYruHNx-DnwX-Aj5BzYJTCmrhJjQgFlYPJVQlF-QGZQCk65AHlIZgyUplxpc0xOUtqy_KvSzMj1oujDO3bFbuyGlm6i278UProdfoT4WvgQi-S6FvuhCOst1kPR4JClDf0pOfKuS3j2q3PyfHvztLynq8e7h-ViRWsBZqCVLA3UxhiG0qOXupGqAd9UDQovtKuN0kKunRasqpWXJXoELqtSGiVQSDEnF1PvPoa3EdNgt2GMfZ603IAGppmC7OKTq44hpYje7mO7c_HTArPfjOzEyGZG9oeR5TkkplDK5n6D8a_6n9QXtNtojA</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Lu, Ye</creator><creator>Zhou, Kedong</creator><creator>Wu, Xiyin</creator><creator>Gong, Penghan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-7504-3599</orcidid></search><sort><creationdate>20191101</creationdate><title>A novel multi-graph framework for salient object detection</title><author>Lu, Ye ; Zhou, Kedong ; Wu, Xiyin ; Gong, Penghan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-65491c9990e5fef58d57d1fd6de3f38ac97835ba8306c7f54efe125645973e353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Graphical representations</topic><topic>Image Processing and Computer Vision</topic><topic>Image retrieval</topic><topic>Methods</topic><topic>Object recognition</topic><topic>Original Article</topic><topic>Propagation</topic><topic>Salience</topic><topic>Seeds</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Ye</creatorcontrib><creatorcontrib>Zhou, Kedong</creatorcontrib><creatorcontrib>Wu, Xiyin</creatorcontrib><creatorcontrib>Gong, Penghan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Ye</au><au>Zhou, Kedong</au><au>Wu, Xiyin</au><au>Gong, Penghan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel multi-graph framework for salient object detection</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>35</volume><issue>11</issue><spage>1683</spage><epage>1699</epage><pages>1683-1699</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>Graph-based methods have been widely adopted for predicting the most attractive region in an image. Most of the existing graph-based methods only utilize single graph to describe the image information, and thus cannot adapt for complex scenes. In this paper, a novel multi-graph framework for salient object detection is proposed. The proposed method is divided into three steps. Firstly, an image is divided into superpixels and described as a multi-graph, where superpixels are represented as nodes and their information is computed by color space and location space. Secondly, the multiple graphs are combined into a novel multi-graph-based manifold ranking propagation framework to obtain a coarse map. Finally, a map refinement model is developed to improve the quality of the coarse map. Experimental results on four challenging datasets show that the proposed method performs favorably against the state-of-the-art salient object detection methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-019-01637-2</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7504-3599</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2019-11, Vol.35 (11), p.1683-1699 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_2918108071 |
source | Springer Link |
subjects | Artificial Intelligence Computer Graphics Computer Science Deep learning Graphical representations Image Processing and Computer Vision Image retrieval Methods Object recognition Original Article Propagation Salience Seeds Semantics |
title | A novel multi-graph framework for salient object detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A34%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20multi-graph%20framework%20for%20salient%20object%20detection&rft.jtitle=The%20Visual%20computer&rft.au=Lu,%20Ye&rft.date=2019-11-01&rft.volume=35&rft.issue=11&rft.spage=1683&rft.epage=1699&rft.pages=1683-1699&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-019-01637-2&rft_dat=%3Cproquest_cross%3E2918108071%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-65491c9990e5fef58d57d1fd6de3f38ac97835ba8306c7f54efe125645973e353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918108071&rft_id=info:pmid/&rfr_iscdi=true |