Loading…
Boosting complete techniques thanks to local search methods
In this paper, an efficient heuristic allowing one to localize inconsistent kernels in propositional knowledge‐bases is described. Then, it is shown that local search techniques can boost the performance of logically complete methods for SAT. More precisely, local search techniques can be used to gu...
Saved in:
Published in: | Annals of mathematics and artificial intelligence 1998-01, Vol.22 (3-4), p.319-331 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c229t-91544e6a44ad2c240e7491dc9585ab39e61dfd2212c24acd6a653c5499ef1f6f3 |
---|---|
cites | |
container_end_page | 331 |
container_issue | 3-4 |
container_start_page | 319 |
container_title | Annals of mathematics and artificial intelligence |
container_volume | 22 |
creator | Mazure, Bertrand Saïs, Lakhdar Grégoire, Éric |
description | In this paper, an efficient heuristic allowing one to localize inconsistent kernels in propositional knowledge‐bases is described. Then, it is shown that local search techniques can boost the performance of logically complete methods for SAT. More precisely, local search techniques can be used to guide the branching strategy of logically complete techniques like Davis and Putnam's one, giving rise to significant performance improvements, in particular when addressing locally inconsistent problems. Moreover, this approach appears very competitive in the context of consistent SAT instances, too. |
doi_str_mv | 10.1023/A:1018999721141 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2918193313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918193313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c229t-91544e6a44ad2c240e7491dc9585ab39e61dfd2212c24acd6a653c5499ef1f6f3</originalsourceid><addsrcrecordid>eNotjktLAzEUhYMoWKtrtwHXo7k3j5mrq1rqAwpudF1icsdpnU7qJP3_tujqO3DgO0eIa1C3oFDfze5BQUNENQIYOBETsLWualOr00NWgBUao8_FRc4bpRS5xk3Ew2NKuayHLxnSdtdzYVk4dMP6Z89Zls4P3wck2afge5nZj6GTWy5divlSnLW-z3z1z6n4eFq8z1-q5dvz63y2rAIilYrAGsPOG-MjBjSKa0MQA9nG-k9N7CC2ERGOpQ_ReWd1sIaIW2hdq6fi5s-7G9PxVllt0n4cDpMrJGiAtAatfwEvOklw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918193313</pqid></control><display><type>article</type><title>Boosting complete techniques thanks to local search methods</title><source>Springer Nature</source><creator>Mazure, Bertrand ; Saïs, Lakhdar ; Grégoire, Éric</creator><creatorcontrib>Mazure, Bertrand ; Saïs, Lakhdar ; Grégoire, Éric</creatorcontrib><description>In this paper, an efficient heuristic allowing one to localize inconsistent kernels in propositional knowledge‐bases is described. Then, it is shown that local search techniques can boost the performance of logically complete methods for SAT. More precisely, local search techniques can be used to guide the branching strategy of logically complete techniques like Davis and Putnam's one, giving rise to significant performance improvements, in particular when addressing locally inconsistent problems. Moreover, this approach appears very competitive in the context of consistent SAT instances, too.</description><identifier>ISSN: 1012-2443</identifier><identifier>EISSN: 1573-7470</identifier><identifier>DOI: 10.1023/A:1018999721141</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Search methods</subject><ispartof>Annals of mathematics and artificial intelligence, 1998-01, Vol.22 (3-4), p.319-331</ispartof><rights>Kluwer Academic Publishers 1998.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c229t-91544e6a44ad2c240e7491dc9585ab39e61dfd2212c24acd6a653c5499ef1f6f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Mazure, Bertrand</creatorcontrib><creatorcontrib>Saïs, Lakhdar</creatorcontrib><creatorcontrib>Grégoire, Éric</creatorcontrib><title>Boosting complete techniques thanks to local search methods</title><title>Annals of mathematics and artificial intelligence</title><description>In this paper, an efficient heuristic allowing one to localize inconsistent kernels in propositional knowledge‐bases is described. Then, it is shown that local search techniques can boost the performance of logically complete methods for SAT. More precisely, local search techniques can be used to guide the branching strategy of logically complete techniques like Davis and Putnam's one, giving rise to significant performance improvements, in particular when addressing locally inconsistent problems. Moreover, this approach appears very competitive in the context of consistent SAT instances, too.</description><subject>Search methods</subject><issn>1012-2443</issn><issn>1573-7470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNotjktLAzEUhYMoWKtrtwHXo7k3j5mrq1rqAwpudF1icsdpnU7qJP3_tujqO3DgO0eIa1C3oFDfze5BQUNENQIYOBETsLWualOr00NWgBUao8_FRc4bpRS5xk3Ew2NKuayHLxnSdtdzYVk4dMP6Z89Zls4P3wck2afge5nZj6GTWy5divlSnLW-z3z1z6n4eFq8z1-q5dvz63y2rAIilYrAGsPOG-MjBjSKa0MQA9nG-k9N7CC2ERGOpQ_ReWd1sIaIW2hdq6fi5s-7G9PxVllt0n4cDpMrJGiAtAatfwEvOklw</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>Mazure, Bertrand</creator><creator>Saïs, Lakhdar</creator><creator>Grégoire, Éric</creator><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>19980101</creationdate><title>Boosting complete techniques thanks to local search methods</title><author>Mazure, Bertrand ; Saïs, Lakhdar ; Grégoire, Éric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c229t-91544e6a44ad2c240e7491dc9585ab39e61dfd2212c24acd6a653c5499ef1f6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Search methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazure, Bertrand</creatorcontrib><creatorcontrib>Saïs, Lakhdar</creatorcontrib><creatorcontrib>Grégoire, Éric</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Annals of mathematics and artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazure, Bertrand</au><au>Saïs, Lakhdar</au><au>Grégoire, Éric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting complete techniques thanks to local search methods</atitle><jtitle>Annals of mathematics and artificial intelligence</jtitle><date>1998-01-01</date><risdate>1998</risdate><volume>22</volume><issue>3-4</issue><spage>319</spage><epage>331</epage><pages>319-331</pages><issn>1012-2443</issn><eissn>1573-7470</eissn><abstract>In this paper, an efficient heuristic allowing one to localize inconsistent kernels in propositional knowledge‐bases is described. Then, it is shown that local search techniques can boost the performance of logically complete methods for SAT. More precisely, local search techniques can be used to guide the branching strategy of logically complete techniques like Davis and Putnam's one, giving rise to significant performance improvements, in particular when addressing locally inconsistent problems. Moreover, this approach appears very competitive in the context of consistent SAT instances, too.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1018999721141</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1012-2443 |
ispartof | Annals of mathematics and artificial intelligence, 1998-01, Vol.22 (3-4), p.319-331 |
issn | 1012-2443 1573-7470 |
language | eng |
recordid | cdi_proquest_journals_2918193313 |
source | Springer Nature |
subjects | Search methods |
title | Boosting complete techniques thanks to local search methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20complete%20techniques%20thanks%20to%20local%20search%20methods&rft.jtitle=Annals%20of%20mathematics%20and%20artificial%20intelligence&rft.au=Mazure,%20Bertrand&rft.date=1998-01-01&rft.volume=22&rft.issue=3-4&rft.spage=319&rft.epage=331&rft.pages=319-331&rft.issn=1012-2443&rft.eissn=1573-7470&rft_id=info:doi/10.1023/A:1018999721141&rft_dat=%3Cproquest%3E2918193313%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c229t-91544e6a44ad2c240e7491dc9585ab39e61dfd2212c24acd6a653c5499ef1f6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918193313&rft_id=info:pmid/&rfr_iscdi=true |