Loading…
Selection of Flow-Diverter Stent Models Using Optical Coherence Tomography and Mathematical Modeling of Hemodynamics
We describe a method for increasing the effectiveness of surgery to position flow-diverter stents into cerebral arteries with aneurysms based on the combined use of mathematical modeling of hemodynamics and compression elastography. Approaches to determining Young's modulus and the Poisson'...
Saved in:
Published in: | Biomedical engineering 2018-03, Vol.51 (6), p.381-384 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe a method for increasing the effectiveness of surgery to position flow-diverter stents into cerebral arteries with aneurysms based on the combined use of mathematical modeling of hemodynamics and compression elastography. Approaches to determining Young's modulus and the Poisson's ratio for phantom of cerebral artery walls on the basis of endoscopic optical coherence tomography data were developed and tested. The applicability of this method was verified using a model of internal carotid artery aneurysm using a mathematical hemodynamic model taking into account the mechanical properties of the cerebral artery wall. |
---|---|
ISSN: | 0006-3398 1573-8256 |
DOI: | 10.1007/s10527-018-9754-7 |