Loading…

Selection of Flow-Diverter Stent Models Using Optical Coherence Tomography and Mathematical Modeling of Hemodynamics

We describe a method for increasing the effectiveness of surgery to position flow-diverter stents into cerebral arteries with aneurysms based on the combined use of mathematical modeling of hemodynamics and compression elastography. Approaches to determining Young's modulus and the Poisson'...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical engineering 2018-03, Vol.51 (6), p.381-384
Main Authors: Frolov, S. V., Potlov, A. Yu, Sindeev, S. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3607-2140aded4eabb0a178405de76715e875b6ea539624ffb612a6ed872f5395e75c3
cites cdi_FETCH-LOGICAL-c3607-2140aded4eabb0a178405de76715e875b6ea539624ffb612a6ed872f5395e75c3
container_end_page 384
container_issue 6
container_start_page 381
container_title Biomedical engineering
container_volume 51
creator Frolov, S. V.
Potlov, A. Yu
Sindeev, S. V.
description We describe a method for increasing the effectiveness of surgery to position flow-diverter stents into cerebral arteries with aneurysms based on the combined use of mathematical modeling of hemodynamics and compression elastography. Approaches to determining Young's modulus and the Poisson's ratio for phantom of cerebral artery walls on the basis of endoscopic optical coherence tomography data were developed and tested. The applicability of this method was verified using a model of internal carotid artery aneurysm using a mathematical hemodynamic model taking into account the mechanical properties of the cerebral artery wall.
doi_str_mv 10.1007/s10527-018-9754-7
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918207034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541103347</galeid><sourcerecordid>A541103347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3607-2140aded4eabb0a178405de76715e875b6ea539624ffb612a6ed872f5395e75c3</originalsourceid><addsrcrecordid>eNp9ksFq3DAQhkVpods0D5CboKcelI5ky7KPYds0gYRANzkLrTz2OtjSVtK23bevNg6EhabMQczwfSMGfkLOOJxzAPUlcpBCMeA1a5QsmXpDFlyqgtVCVm_JAgAqVhRN_Z58iPExt7KuxYKkFY5o0-Ad9R29HP1v9nX4hSFhoKuELtFb3-IY6UMcXE_vtmmwZqRLv8GAziK995Pvg9lu9tS4lt6atMHJzNSTetDy6iucfLt3Zhps_EjedWaMePr8npCHy2_3yyt2c_f9enlxw2xRgWKCl2BabEs06zUYruoSZIuqUlxireS6QiOLphJl160rLkyFba1El2cSlbTFCfk0790G_3OHMelHvwsuf6lFw2sBCoryvxTwRgGUpXqhejOiHlznUzB2GqLVF7LkHIriiTr_B5WrxXy4d9gNeX4kfD4SMpPwT-rNLkZ9vfpxzPKZtcHHGLDT2zBMJuw1B31IgZ5ToHMK9CEF-uCI2YmZdT2Gl-Nel_4ChZmx5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918207034</pqid></control><display><type>article</type><title>Selection of Flow-Diverter Stent Models Using Optical Coherence Tomography and Mathematical Modeling of Hemodynamics</title><source>Springer Link</source><creator>Frolov, S. V. ; Potlov, A. Yu ; Sindeev, S. V.</creator><creatorcontrib>Frolov, S. V. ; Potlov, A. Yu ; Sindeev, S. V.</creatorcontrib><description>We describe a method for increasing the effectiveness of surgery to position flow-diverter stents into cerebral arteries with aneurysms based on the combined use of mathematical modeling of hemodynamics and compression elastography. Approaches to determining Young's modulus and the Poisson's ratio for phantom of cerebral artery walls on the basis of endoscopic optical coherence tomography data were developed and tested. The applicability of this method was verified using a model of internal carotid artery aneurysm using a mathematical hemodynamic model taking into account the mechanical properties of the cerebral artery wall.</description><identifier>ISSN: 0006-3398</identifier><identifier>EISSN: 1573-8256</identifier><identifier>DOI: 10.1007/s10527-018-9754-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aneurysm ; Aneurysms ; Arteries ; Biomaterials ; Biomedical Engineering and Bioengineering ; Care and treatment ; Carotid arteries ; Carotid artery ; Circulatory system ; Compression ; Doppler effect ; Engineering ; Hemodynamics ; Implants ; Mathematical analysis ; Mathematical models ; Mechanical properties ; Medical imaging ; Modulus of elasticity ; Optical Coherence Tomography ; Poisson's ratio ; Stents ; Surgery ; Surgical implants ; Tomography ; Veins &amp; arteries</subject><ispartof>Biomedical engineering, 2018-03, Vol.51 (6), p.381-384</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Biomedical Engineering is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3607-2140aded4eabb0a178405de76715e875b6ea539624ffb612a6ed872f5395e75c3</citedby><cites>FETCH-LOGICAL-c3607-2140aded4eabb0a178405de76715e875b6ea539624ffb612a6ed872f5395e75c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Frolov, S. V.</creatorcontrib><creatorcontrib>Potlov, A. Yu</creatorcontrib><creatorcontrib>Sindeev, S. V.</creatorcontrib><title>Selection of Flow-Diverter Stent Models Using Optical Coherence Tomography and Mathematical Modeling of Hemodynamics</title><title>Biomedical engineering</title><addtitle>Biomed Eng</addtitle><description>We describe a method for increasing the effectiveness of surgery to position flow-diverter stents into cerebral arteries with aneurysms based on the combined use of mathematical modeling of hemodynamics and compression elastography. Approaches to determining Young's modulus and the Poisson's ratio for phantom of cerebral artery walls on the basis of endoscopic optical coherence tomography data were developed and tested. The applicability of this method was verified using a model of internal carotid artery aneurysm using a mathematical hemodynamic model taking into account the mechanical properties of the cerebral artery wall.</description><subject>Aneurysm</subject><subject>Aneurysms</subject><subject>Arteries</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Care and treatment</subject><subject>Carotid arteries</subject><subject>Carotid artery</subject><subject>Circulatory system</subject><subject>Compression</subject><subject>Doppler effect</subject><subject>Engineering</subject><subject>Hemodynamics</subject><subject>Implants</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Medical imaging</subject><subject>Modulus of elasticity</subject><subject>Optical Coherence Tomography</subject><subject>Poisson's ratio</subject><subject>Stents</subject><subject>Surgery</subject><subject>Surgical implants</subject><subject>Tomography</subject><subject>Veins &amp; arteries</subject><issn>0006-3398</issn><issn>1573-8256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9ksFq3DAQhkVpods0D5CboKcelI5ky7KPYds0gYRANzkLrTz2OtjSVtK23bevNg6EhabMQczwfSMGfkLOOJxzAPUlcpBCMeA1a5QsmXpDFlyqgtVCVm_JAgAqVhRN_Z58iPExt7KuxYKkFY5o0-Ad9R29HP1v9nX4hSFhoKuELtFb3-IY6UMcXE_vtmmwZqRLv8GAziK995Pvg9lu9tS4lt6atMHJzNSTetDy6iucfLt3Zhps_EjedWaMePr8npCHy2_3yyt2c_f9enlxw2xRgWKCl2BabEs06zUYruoSZIuqUlxireS6QiOLphJl160rLkyFba1El2cSlbTFCfk0790G_3OHMelHvwsuf6lFw2sBCoryvxTwRgGUpXqhejOiHlznUzB2GqLVF7LkHIriiTr_B5WrxXy4d9gNeX4kfD4SMpPwT-rNLkZ9vfpxzPKZtcHHGLDT2zBMJuw1B31IgZ5ToHMK9CEF-uCI2YmZdT2Gl-Nel_4ChZmx5A</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Frolov, S. V.</creator><creator>Potlov, A. Yu</creator><creator>Sindeev, S. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB0</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20180301</creationdate><title>Selection of Flow-Diverter Stent Models Using Optical Coherence Tomography and Mathematical Modeling of Hemodynamics</title><author>Frolov, S. V. ; Potlov, A. Yu ; Sindeev, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3607-2140aded4eabb0a178405de76715e875b6ea539624ffb612a6ed872f5395e75c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aneurysm</topic><topic>Aneurysms</topic><topic>Arteries</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Care and treatment</topic><topic>Carotid arteries</topic><topic>Carotid artery</topic><topic>Circulatory system</topic><topic>Compression</topic><topic>Doppler effect</topic><topic>Engineering</topic><topic>Hemodynamics</topic><topic>Implants</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Medical imaging</topic><topic>Modulus of elasticity</topic><topic>Optical Coherence Tomography</topic><topic>Poisson's ratio</topic><topic>Stents</topic><topic>Surgery</topic><topic>Surgical implants</topic><topic>Tomography</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frolov, S. V.</creatorcontrib><creatorcontrib>Potlov, A. Yu</creatorcontrib><creatorcontrib>Sindeev, S. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frolov, S. V.</au><au>Potlov, A. Yu</au><au>Sindeev, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection of Flow-Diverter Stent Models Using Optical Coherence Tomography and Mathematical Modeling of Hemodynamics</atitle><jtitle>Biomedical engineering</jtitle><stitle>Biomed Eng</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>51</volume><issue>6</issue><spage>381</spage><epage>384</epage><pages>381-384</pages><issn>0006-3398</issn><eissn>1573-8256</eissn><abstract>We describe a method for increasing the effectiveness of surgery to position flow-diverter stents into cerebral arteries with aneurysms based on the combined use of mathematical modeling of hemodynamics and compression elastography. Approaches to determining Young's modulus and the Poisson's ratio for phantom of cerebral artery walls on the basis of endoscopic optical coherence tomography data were developed and tested. The applicability of this method was verified using a model of internal carotid artery aneurysm using a mathematical hemodynamic model taking into account the mechanical properties of the cerebral artery wall.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10527-018-9754-7</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3398
ispartof Biomedical engineering, 2018-03, Vol.51 (6), p.381-384
issn 0006-3398
1573-8256
language eng
recordid cdi_proquest_journals_2918207034
source Springer Link
subjects Aneurysm
Aneurysms
Arteries
Biomaterials
Biomedical Engineering and Bioengineering
Care and treatment
Carotid arteries
Carotid artery
Circulatory system
Compression
Doppler effect
Engineering
Hemodynamics
Implants
Mathematical analysis
Mathematical models
Mechanical properties
Medical imaging
Modulus of elasticity
Optical Coherence Tomography
Poisson's ratio
Stents
Surgery
Surgical implants
Tomography
Veins & arteries
title Selection of Flow-Diverter Stent Models Using Optical Coherence Tomography and Mathematical Modeling of Hemodynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20of%20Flow-Diverter%20Stent%20Models%20Using%20Optical%20Coherence%20Tomography%20and%20Mathematical%20Modeling%20of%20Hemodynamics&rft.jtitle=Biomedical%20engineering&rft.au=Frolov,%20S.%20V.&rft.date=2018-03-01&rft.volume=51&rft.issue=6&rft.spage=381&rft.epage=384&rft.pages=381-384&rft.issn=0006-3398&rft.eissn=1573-8256&rft_id=info:doi/10.1007/s10527-018-9754-7&rft_dat=%3Cgale_proqu%3EA541103347%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3607-2140aded4eabb0a178405de76715e875b6ea539624ffb612a6ed872f5395e75c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918207034&rft_id=info:pmid/&rft_galeid=A541103347&rfr_iscdi=true