Loading…
Selection of Flow-Diverter Stent Models Using Optical Coherence Tomography and Mathematical Modeling of Hemodynamics
We describe a method for increasing the effectiveness of surgery to position flow-diverter stents into cerebral arteries with aneurysms based on the combined use of mathematical modeling of hemodynamics and compression elastography. Approaches to determining Young's modulus and the Poisson'...
Saved in:
Published in: | Biomedical engineering 2018-03, Vol.51 (6), p.381-384 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3607-2140aded4eabb0a178405de76715e875b6ea539624ffb612a6ed872f5395e75c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3607-2140aded4eabb0a178405de76715e875b6ea539624ffb612a6ed872f5395e75c3 |
container_end_page | 384 |
container_issue | 6 |
container_start_page | 381 |
container_title | Biomedical engineering |
container_volume | 51 |
creator | Frolov, S. V. Potlov, A. Yu Sindeev, S. V. |
description | We describe a method for increasing the effectiveness of surgery to position flow-diverter stents into cerebral arteries with aneurysms based on the combined use of mathematical modeling of hemodynamics and compression elastography. Approaches to determining Young's modulus and the Poisson's ratio for phantom of cerebral artery walls on the basis of endoscopic optical coherence tomography data were developed and tested. The applicability of this method was verified using a model of internal carotid artery aneurysm using a mathematical hemodynamic model taking into account the mechanical properties of the cerebral artery wall. |
doi_str_mv | 10.1007/s10527-018-9754-7 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918207034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541103347</galeid><sourcerecordid>A541103347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3607-2140aded4eabb0a178405de76715e875b6ea539624ffb612a6ed872f5395e75c3</originalsourceid><addsrcrecordid>eNp9ksFq3DAQhkVpods0D5CboKcelI5ky7KPYds0gYRANzkLrTz2OtjSVtK23bevNg6EhabMQczwfSMGfkLOOJxzAPUlcpBCMeA1a5QsmXpDFlyqgtVCVm_JAgAqVhRN_Z58iPExt7KuxYKkFY5o0-Ad9R29HP1v9nX4hSFhoKuELtFb3-IY6UMcXE_vtmmwZqRLv8GAziK995Pvg9lu9tS4lt6atMHJzNSTetDy6iucfLt3Zhps_EjedWaMePr8npCHy2_3yyt2c_f9enlxw2xRgWKCl2BabEs06zUYruoSZIuqUlxireS6QiOLphJl160rLkyFba1El2cSlbTFCfk0790G_3OHMelHvwsuf6lFw2sBCoryvxTwRgGUpXqhejOiHlznUzB2GqLVF7LkHIriiTr_B5WrxXy4d9gNeX4kfD4SMpPwT-rNLkZ9vfpxzPKZtcHHGLDT2zBMJuw1B31IgZ5ToHMK9CEF-uCI2YmZdT2Gl-Nel_4ChZmx5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918207034</pqid></control><display><type>article</type><title>Selection of Flow-Diverter Stent Models Using Optical Coherence Tomography and Mathematical Modeling of Hemodynamics</title><source>Springer Link</source><creator>Frolov, S. V. ; Potlov, A. Yu ; Sindeev, S. V.</creator><creatorcontrib>Frolov, S. V. ; Potlov, A. Yu ; Sindeev, S. V.</creatorcontrib><description>We describe a method for increasing the effectiveness of surgery to position flow-diverter stents into cerebral arteries with aneurysms based on the combined use of mathematical modeling of hemodynamics and compression elastography. Approaches to determining Young's modulus and the Poisson's ratio for phantom of cerebral artery walls on the basis of endoscopic optical coherence tomography data were developed and tested. The applicability of this method was verified using a model of internal carotid artery aneurysm using a mathematical hemodynamic model taking into account the mechanical properties of the cerebral artery wall.</description><identifier>ISSN: 0006-3398</identifier><identifier>EISSN: 1573-8256</identifier><identifier>DOI: 10.1007/s10527-018-9754-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aneurysm ; Aneurysms ; Arteries ; Biomaterials ; Biomedical Engineering and Bioengineering ; Care and treatment ; Carotid arteries ; Carotid artery ; Circulatory system ; Compression ; Doppler effect ; Engineering ; Hemodynamics ; Implants ; Mathematical analysis ; Mathematical models ; Mechanical properties ; Medical imaging ; Modulus of elasticity ; Optical Coherence Tomography ; Poisson's ratio ; Stents ; Surgery ; Surgical implants ; Tomography ; Veins & arteries</subject><ispartof>Biomedical engineering, 2018-03, Vol.51 (6), p.381-384</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Biomedical Engineering is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3607-2140aded4eabb0a178405de76715e875b6ea539624ffb612a6ed872f5395e75c3</citedby><cites>FETCH-LOGICAL-c3607-2140aded4eabb0a178405de76715e875b6ea539624ffb612a6ed872f5395e75c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Frolov, S. V.</creatorcontrib><creatorcontrib>Potlov, A. Yu</creatorcontrib><creatorcontrib>Sindeev, S. V.</creatorcontrib><title>Selection of Flow-Diverter Stent Models Using Optical Coherence Tomography and Mathematical Modeling of Hemodynamics</title><title>Biomedical engineering</title><addtitle>Biomed Eng</addtitle><description>We describe a method for increasing the effectiveness of surgery to position flow-diverter stents into cerebral arteries with aneurysms based on the combined use of mathematical modeling of hemodynamics and compression elastography. Approaches to determining Young's modulus and the Poisson's ratio for phantom of cerebral artery walls on the basis of endoscopic optical coherence tomography data were developed and tested. The applicability of this method was verified using a model of internal carotid artery aneurysm using a mathematical hemodynamic model taking into account the mechanical properties of the cerebral artery wall.</description><subject>Aneurysm</subject><subject>Aneurysms</subject><subject>Arteries</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Care and treatment</subject><subject>Carotid arteries</subject><subject>Carotid artery</subject><subject>Circulatory system</subject><subject>Compression</subject><subject>Doppler effect</subject><subject>Engineering</subject><subject>Hemodynamics</subject><subject>Implants</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Medical imaging</subject><subject>Modulus of elasticity</subject><subject>Optical Coherence Tomography</subject><subject>Poisson's ratio</subject><subject>Stents</subject><subject>Surgery</subject><subject>Surgical implants</subject><subject>Tomography</subject><subject>Veins & arteries</subject><issn>0006-3398</issn><issn>1573-8256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9ksFq3DAQhkVpods0D5CboKcelI5ky7KPYds0gYRANzkLrTz2OtjSVtK23bevNg6EhabMQczwfSMGfkLOOJxzAPUlcpBCMeA1a5QsmXpDFlyqgtVCVm_JAgAqVhRN_Z58iPExt7KuxYKkFY5o0-Ad9R29HP1v9nX4hSFhoKuELtFb3-IY6UMcXE_vtmmwZqRLv8GAziK995Pvg9lu9tS4lt6atMHJzNSTetDy6iucfLt3Zhps_EjedWaMePr8npCHy2_3yyt2c_f9enlxw2xRgWKCl2BabEs06zUYruoSZIuqUlxireS6QiOLphJl160rLkyFba1El2cSlbTFCfk0790G_3OHMelHvwsuf6lFw2sBCoryvxTwRgGUpXqhejOiHlznUzB2GqLVF7LkHIriiTr_B5WrxXy4d9gNeX4kfD4SMpPwT-rNLkZ9vfpxzPKZtcHHGLDT2zBMJuw1B31IgZ5ToHMK9CEF-uCI2YmZdT2Gl-Nel_4ChZmx5A</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Frolov, S. V.</creator><creator>Potlov, A. Yu</creator><creator>Sindeev, S. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB0</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20180301</creationdate><title>Selection of Flow-Diverter Stent Models Using Optical Coherence Tomography and Mathematical Modeling of Hemodynamics</title><author>Frolov, S. V. ; Potlov, A. Yu ; Sindeev, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3607-2140aded4eabb0a178405de76715e875b6ea539624ffb612a6ed872f5395e75c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aneurysm</topic><topic>Aneurysms</topic><topic>Arteries</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Care and treatment</topic><topic>Carotid arteries</topic><topic>Carotid artery</topic><topic>Circulatory system</topic><topic>Compression</topic><topic>Doppler effect</topic><topic>Engineering</topic><topic>Hemodynamics</topic><topic>Implants</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Medical imaging</topic><topic>Modulus of elasticity</topic><topic>Optical Coherence Tomography</topic><topic>Poisson's ratio</topic><topic>Stents</topic><topic>Surgery</topic><topic>Surgical implants</topic><topic>Tomography</topic><topic>Veins & arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frolov, S. V.</creatorcontrib><creatorcontrib>Potlov, A. Yu</creatorcontrib><creatorcontrib>Sindeev, S. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frolov, S. V.</au><au>Potlov, A. Yu</au><au>Sindeev, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection of Flow-Diverter Stent Models Using Optical Coherence Tomography and Mathematical Modeling of Hemodynamics</atitle><jtitle>Biomedical engineering</jtitle><stitle>Biomed Eng</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>51</volume><issue>6</issue><spage>381</spage><epage>384</epage><pages>381-384</pages><issn>0006-3398</issn><eissn>1573-8256</eissn><abstract>We describe a method for increasing the effectiveness of surgery to position flow-diverter stents into cerebral arteries with aneurysms based on the combined use of mathematical modeling of hemodynamics and compression elastography. Approaches to determining Young's modulus and the Poisson's ratio for phantom of cerebral artery walls on the basis of endoscopic optical coherence tomography data were developed and tested. The applicability of this method was verified using a model of internal carotid artery aneurysm using a mathematical hemodynamic model taking into account the mechanical properties of the cerebral artery wall.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10527-018-9754-7</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3398 |
ispartof | Biomedical engineering, 2018-03, Vol.51 (6), p.381-384 |
issn | 0006-3398 1573-8256 |
language | eng |
recordid | cdi_proquest_journals_2918207034 |
source | Springer Link |
subjects | Aneurysm Aneurysms Arteries Biomaterials Biomedical Engineering and Bioengineering Care and treatment Carotid arteries Carotid artery Circulatory system Compression Doppler effect Engineering Hemodynamics Implants Mathematical analysis Mathematical models Mechanical properties Medical imaging Modulus of elasticity Optical Coherence Tomography Poisson's ratio Stents Surgery Surgical implants Tomography Veins & arteries |
title | Selection of Flow-Diverter Stent Models Using Optical Coherence Tomography and Mathematical Modeling of Hemodynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20of%20Flow-Diverter%20Stent%20Models%20Using%20Optical%20Coherence%20Tomography%20and%20Mathematical%20Modeling%20of%20Hemodynamics&rft.jtitle=Biomedical%20engineering&rft.au=Frolov,%20S.%20V.&rft.date=2018-03-01&rft.volume=51&rft.issue=6&rft.spage=381&rft.epage=384&rft.pages=381-384&rft.issn=0006-3398&rft.eissn=1573-8256&rft_id=info:doi/10.1007/s10527-018-9754-7&rft_dat=%3Cgale_proqu%3EA541103347%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3607-2140aded4eabb0a178405de76715e875b6ea539624ffb612a6ed872f5395e75c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918207034&rft_id=info:pmid/&rft_galeid=A541103347&rfr_iscdi=true |