Loading…

A rough set data prediction method based on neural network evaluation and least squares fusion

To improve precision of heat insulation performance analysis algorithm of composite wall in hot summer and cold winter zone, a kind of rough-set predicative analysis method for heat insulation performance of composite wall in hot summer and cold winter zone is put forward. Firstly, structure and par...

Full description

Saved in:
Bibliographic Details
Published in:Cluster computing 2019-09, Vol.22 (Suppl 5), p.11641-11646
Main Authors: Fei, Xi, Youfu, Sun, Xuejun, Ruan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-c31efb3788fb3cb537e64a0745687dad889f5a9580b1841461f7db205fa0d11c3
cites cdi_FETCH-LOGICAL-c316t-c31efb3788fb3cb537e64a0745687dad889f5a9580b1841461f7db205fa0d11c3
container_end_page 11646
container_issue Suppl 5
container_start_page 11641
container_title Cluster computing
container_volume 22
creator Fei, Xi
Youfu, Sun
Xuejun, Ruan
description To improve precision of heat insulation performance analysis algorithm of composite wall in hot summer and cold winter zone, a kind of rough-set predicative analysis method for heat insulation performance of composite wall in hot summer and cold winter zone is put forward. Firstly, structure and parameter for three kinds of walls adopted in research of this Paper are provided and corresponding heat-insulation physical model and problems are described; secondly, introducing rough set, combining with its advantages in disposing uncertain and inaccurate and incomplete data, evaluation analysis for insulation performance of composite wall has been realized; finally, the validity of proposed method is verified by simulation experiment.
doi_str_mv 10.1007/s10586-018-2641-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918246885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918246885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c31efb3788fb3cb537e64a0745687dad889f5a9580b1841461f7db205fa0d11c3</originalsourceid><addsrcrecordid>eNp1UMlOwzAQtRBIlOUDuFniHPDEcewcq4pNqsQFrliT2OlCmrReoPw9LkHixGXejN4y0iPkCtgNMCZvPTChyoyByvKygGx_RCYgJM-kKPhx2nlipRLylJx5v2aMVTKvJuRtSt0QF0vqbaAGA9Kts2bVhNXQ040Ny8HQGr01NN29jQ67BOFzcO_UfmAX8UeJvaGdRR-o30V01tM2-kRckJMWO28vf_GcvN7fvcwes_nzw9NsOs8aDmU4TNvWXCqVZlMLLm1ZIJOFKJU0aJSqWoGVUKwGVUBRQitNnTPRIjMADT8n12Pu1g27aH3Q6yG6Pr3UeQUqL0qlRFLBqGrc4L2zrd661QbdlwamDzXqsUadatSHGvU-efLR45O2X1j3l_y_6Rv163Z3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918246885</pqid></control><display><type>article</type><title>A rough set data prediction method based on neural network evaluation and least squares fusion</title><source>Springer Nature</source><creator>Fei, Xi ; Youfu, Sun ; Xuejun, Ruan</creator><creatorcontrib>Fei, Xi ; Youfu, Sun ; Xuejun, Ruan</creatorcontrib><description>To improve precision of heat insulation performance analysis algorithm of composite wall in hot summer and cold winter zone, a kind of rough-set predicative analysis method for heat insulation performance of composite wall in hot summer and cold winter zone is put forward. Firstly, structure and parameter for three kinds of walls adopted in research of this Paper are provided and corresponding heat-insulation physical model and problems are described; secondly, introducing rough set, combining with its advantages in disposing uncertain and inaccurate and incomplete data, evaluation analysis for insulation performance of composite wall has been realized; finally, the validity of proposed method is verified by simulation experiment.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-018-2641-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Computer Communication Networks ; Computer Science ; Construction ; Energy conservation ; Energy consumption ; Fuzzy sets ; Heat transfer ; Industrialized nations ; Insulation ; Knowledge representation ; Neural networks ; Operating Systems ; Processor Architectures ; Random variables ; Summer ; Temperature ; Winter</subject><ispartof>Cluster computing, 2019-09, Vol.22 (Suppl 5), p.11641-11646</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c31efb3788fb3cb537e64a0745687dad889f5a9580b1841461f7db205fa0d11c3</citedby><cites>FETCH-LOGICAL-c316t-c31efb3788fb3cb537e64a0745687dad889f5a9580b1841461f7db205fa0d11c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Fei, Xi</creatorcontrib><creatorcontrib>Youfu, Sun</creatorcontrib><creatorcontrib>Xuejun, Ruan</creatorcontrib><title>A rough set data prediction method based on neural network evaluation and least squares fusion</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>To improve precision of heat insulation performance analysis algorithm of composite wall in hot summer and cold winter zone, a kind of rough-set predicative analysis method for heat insulation performance of composite wall in hot summer and cold winter zone is put forward. Firstly, structure and parameter for three kinds of walls adopted in research of this Paper are provided and corresponding heat-insulation physical model and problems are described; secondly, introducing rough set, combining with its advantages in disposing uncertain and inaccurate and incomplete data, evaluation analysis for insulation performance of composite wall has been realized; finally, the validity of proposed method is verified by simulation experiment.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Fuzzy sets</subject><subject>Heat transfer</subject><subject>Industrialized nations</subject><subject>Insulation</subject><subject>Knowledge representation</subject><subject>Neural networks</subject><subject>Operating Systems</subject><subject>Processor Architectures</subject><subject>Random variables</subject><subject>Summer</subject><subject>Temperature</subject><subject>Winter</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMlOwzAQtRBIlOUDuFniHPDEcewcq4pNqsQFrliT2OlCmrReoPw9LkHixGXejN4y0iPkCtgNMCZvPTChyoyByvKygGx_RCYgJM-kKPhx2nlipRLylJx5v2aMVTKvJuRtSt0QF0vqbaAGA9Kts2bVhNXQ040Ny8HQGr01NN29jQ67BOFzcO_UfmAX8UeJvaGdRR-o30V01tM2-kRckJMWO28vf_GcvN7fvcwes_nzw9NsOs8aDmU4TNvWXCqVZlMLLm1ZIJOFKJU0aJSqWoGVUKwGVUBRQitNnTPRIjMADT8n12Pu1g27aH3Q6yG6Pr3UeQUqL0qlRFLBqGrc4L2zrd661QbdlwamDzXqsUadatSHGvU-efLR45O2X1j3l_y_6Rv163Z3</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Fei, Xi</creator><creator>Youfu, Sun</creator><creator>Xuejun, Ruan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190901</creationdate><title>A rough set data prediction method based on neural network evaluation and least squares fusion</title><author>Fei, Xi ; Youfu, Sun ; Xuejun, Ruan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c31efb3788fb3cb537e64a0745687dad889f5a9580b1841461f7db205fa0d11c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Fuzzy sets</topic><topic>Heat transfer</topic><topic>Industrialized nations</topic><topic>Insulation</topic><topic>Knowledge representation</topic><topic>Neural networks</topic><topic>Operating Systems</topic><topic>Processor Architectures</topic><topic>Random variables</topic><topic>Summer</topic><topic>Temperature</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fei, Xi</creatorcontrib><creatorcontrib>Youfu, Sun</creatorcontrib><creatorcontrib>Xuejun, Ruan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fei, Xi</au><au>Youfu, Sun</au><au>Xuejun, Ruan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A rough set data prediction method based on neural network evaluation and least squares fusion</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>22</volume><issue>Suppl 5</issue><spage>11641</spage><epage>11646</epage><pages>11641-11646</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>To improve precision of heat insulation performance analysis algorithm of composite wall in hot summer and cold winter zone, a kind of rough-set predicative analysis method for heat insulation performance of composite wall in hot summer and cold winter zone is put forward. Firstly, structure and parameter for three kinds of walls adopted in research of this Paper are provided and corresponding heat-insulation physical model and problems are described; secondly, introducing rough set, combining with its advantages in disposing uncertain and inaccurate and incomplete data, evaluation analysis for insulation performance of composite wall has been realized; finally, the validity of proposed method is verified by simulation experiment.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-018-2641-x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-7857
ispartof Cluster computing, 2019-09, Vol.22 (Suppl 5), p.11641-11646
issn 1386-7857
1573-7543
language eng
recordid cdi_proquest_journals_2918246885
source Springer Nature
subjects Algorithms
Approximation
Computer Communication Networks
Computer Science
Construction
Energy conservation
Energy consumption
Fuzzy sets
Heat transfer
Industrialized nations
Insulation
Knowledge representation
Neural networks
Operating Systems
Processor Architectures
Random variables
Summer
Temperature
Winter
title A rough set data prediction method based on neural network evaluation and least squares fusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20rough%20set%20data%20prediction%20method%20based%20on%20neural%20network%20evaluation%20and%20least%20squares%20fusion&rft.jtitle=Cluster%20computing&rft.au=Fei,%20Xi&rft.date=2019-09-01&rft.volume=22&rft.issue=Suppl%205&rft.spage=11641&rft.epage=11646&rft.pages=11641-11646&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-018-2641-x&rft_dat=%3Cproquest_cross%3E2918246885%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-c31efb3788fb3cb537e64a0745687dad889f5a9580b1841461f7db205fa0d11c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918246885&rft_id=info:pmid/&rfr_iscdi=true