Loading…

People’s individual characteristics and their significance for producing reliable forecasts of the effectiveness of purposeful physical activity

We show here that individual psychophysiological characteristics have particular influences on the effectiveness of physical activity. Cluster analysis, artificial neural network technology, and a multifactorial linear regression model were used to generate an algorithm for predicting the effectiven...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical engineering 2023-11, Vol.57 (4), p.291-294
Main Authors: Mazikin, I. M., Lapkin, M. M., Akulina, M. V., Zorin, R. A., Avacheva, T. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c371t-e54276fabb2451038871088c3120dc05c9a659515769b713976cbed68403a6803
container_end_page 294
container_issue 4
container_start_page 291
container_title Biomedical engineering
container_volume 57
creator Mazikin, I. M.
Lapkin, M. M.
Akulina, M. V.
Zorin, R. A.
Avacheva, T. G.
description We show here that individual psychophysiological characteristics have particular influences on the effectiveness of physical activity. Cluster analysis, artificial neural network technology, and a multifactorial linear regression model were used to generate an algorithm for predicting the effectiveness of purposeful activities when attempting target standards in physical culture by university students. The results obtained here provide grounds for building reliable predictions to define the direction of physical training in young people.
doi_str_mv 10.1007/s10527-023-10318-3
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918252253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A776202144</galeid><sourcerecordid>A776202144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-e54276fabb2451038871088c3120dc05c9a659515769b713976cbed68403a6803</originalsourceid><addsrcrecordid>eNp9kctq3DAUhk1podO0L9CVoKsunOpiWfIyhF4CgZZe1kKWj2YUPLKrI4fMrs_QXV4vT1LNTCEMlKKF0M_3n6Nz_qp6zeg5o1S9Q0YlVzXlomZUMF2LJ9WKSSVqzWX7tFpRSttaiE4_r14g3pSn1Jqvqt9fYJpHePh1jyTEIdyGYbEjcRubrMuQAubgkNg4kLyBkAiGdQw-OBsdED8lMqdpWFyIa5JgDLYfDzI4ixnJ5Pc2At6Dy-EWIuBBnJc0Twh-Gcm82WEpNxK7J0LevayeeTsivPp7n1U_Prz_fvmpvv788ery4rp2QrFcg2y4ar3te97IMrTWilGtnWCcDo5K19lWdrIsoe16xUSnWtfD0OqGCttqKs6qN8e6ZYKfC2A2N9OSYmlpeMfK3jiX4pFa2xFMiH7KZTPbgM5cKNVyylnTFOr8H1Q5A2yDmyL4UPQTw9sTQ2Ey3OW1XRDN1bevpyw_si5NiAm8mVPY2rQzjJp9_OYYvynxm0P8Zv9vcTRhgeMa0uN0_3H9AR0ks3k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918252253</pqid></control><display><type>article</type><title>People’s individual characteristics and their significance for producing reliable forecasts of the effectiveness of purposeful physical activity</title><source>Springer Nature</source><creator>Mazikin, I. M. ; Lapkin, M. M. ; Akulina, M. V. ; Zorin, R. A. ; Avacheva, T. G.</creator><creatorcontrib>Mazikin, I. M. ; Lapkin, M. M. ; Akulina, M. V. ; Zorin, R. A. ; Avacheva, T. G.</creatorcontrib><description>We show here that individual psychophysiological characteristics have particular influences on the effectiveness of physical activity. Cluster analysis, artificial neural network technology, and a multifactorial linear regression model were used to generate an algorithm for predicting the effectiveness of purposeful activities when attempting target standards in physical culture by university students. The results obtained here provide grounds for building reliable predictions to define the direction of physical training in young people.</description><identifier>ISSN: 0006-3398</identifier><identifier>EISSN: 1573-8256</identifier><identifier>DOI: 10.1007/s10527-023-10318-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial neural networks ; Asymmetry ; Biomaterials ; Biomedical and Life Sciences ; Biomedicine ; Cluster analysis ; Effectiveness ; Engineering ; Exercise ; Forecasts and trends ; Nervous system ; Neural networks ; Personal appearance ; Physical activity ; Physical fitness ; Physical training ; Physiology ; Psychophysiology ; Questionnaires ; Regression models ; Students ; Surgery ; Young adults</subject><ispartof>Biomedical engineering, 2023-11, Vol.57 (4), p.291-294</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c371t-e54276fabb2451038871088c3120dc05c9a659515769b713976cbed68403a6803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mazikin, I. M.</creatorcontrib><creatorcontrib>Lapkin, M. M.</creatorcontrib><creatorcontrib>Akulina, M. V.</creatorcontrib><creatorcontrib>Zorin, R. A.</creatorcontrib><creatorcontrib>Avacheva, T. G.</creatorcontrib><title>People’s individual characteristics and their significance for producing reliable forecasts of the effectiveness of purposeful physical activity</title><title>Biomedical engineering</title><addtitle>Biomed Eng</addtitle><description>We show here that individual psychophysiological characteristics have particular influences on the effectiveness of physical activity. Cluster analysis, artificial neural network technology, and a multifactorial linear regression model were used to generate an algorithm for predicting the effectiveness of purposeful activities when attempting target standards in physical culture by university students. The results obtained here provide grounds for building reliable predictions to define the direction of physical training in young people.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Asymmetry</subject><subject>Biomaterials</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cluster analysis</subject><subject>Effectiveness</subject><subject>Engineering</subject><subject>Exercise</subject><subject>Forecasts and trends</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Personal appearance</subject><subject>Physical activity</subject><subject>Physical fitness</subject><subject>Physical training</subject><subject>Physiology</subject><subject>Psychophysiology</subject><subject>Questionnaires</subject><subject>Regression models</subject><subject>Students</subject><subject>Surgery</subject><subject>Young adults</subject><issn>0006-3398</issn><issn>1573-8256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kctq3DAUhk1podO0L9CVoKsunOpiWfIyhF4CgZZe1kKWj2YUPLKrI4fMrs_QXV4vT1LNTCEMlKKF0M_3n6Nz_qp6zeg5o1S9Q0YlVzXlomZUMF2LJ9WKSSVqzWX7tFpRSttaiE4_r14g3pSn1Jqvqt9fYJpHePh1jyTEIdyGYbEjcRubrMuQAubgkNg4kLyBkAiGdQw-OBsdED8lMqdpWFyIa5JgDLYfDzI4ixnJ5Pc2At6Dy-EWIuBBnJc0Twh-Gcm82WEpNxK7J0LevayeeTsivPp7n1U_Prz_fvmpvv788ery4rp2QrFcg2y4ar3te97IMrTWilGtnWCcDo5K19lWdrIsoe16xUSnWtfD0OqGCttqKs6qN8e6ZYKfC2A2N9OSYmlpeMfK3jiX4pFa2xFMiH7KZTPbgM5cKNVyylnTFOr8H1Q5A2yDmyL4UPQTw9sTQ2Ey3OW1XRDN1bevpyw_si5NiAm8mVPY2rQzjJp9_OYYvynxm0P8Zv9vcTRhgeMa0uN0_3H9AR0ks3k</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Mazikin, I. M.</creator><creator>Lapkin, M. M.</creator><creator>Akulina, M. V.</creator><creator>Zorin, R. A.</creator><creator>Avacheva, T. G.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20231101</creationdate><title>People’s individual characteristics and their significance for producing reliable forecasts of the effectiveness of purposeful physical activity</title><author>Mazikin, I. M. ; Lapkin, M. M. ; Akulina, M. V. ; Zorin, R. A. ; Avacheva, T. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-e54276fabb2451038871088c3120dc05c9a659515769b713976cbed68403a6803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Asymmetry</topic><topic>Biomaterials</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cluster analysis</topic><topic>Effectiveness</topic><topic>Engineering</topic><topic>Exercise</topic><topic>Forecasts and trends</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Personal appearance</topic><topic>Physical activity</topic><topic>Physical fitness</topic><topic>Physical training</topic><topic>Physiology</topic><topic>Psychophysiology</topic><topic>Questionnaires</topic><topic>Regression models</topic><topic>Students</topic><topic>Surgery</topic><topic>Young adults</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazikin, I. M.</creatorcontrib><creatorcontrib>Lapkin, M. M.</creatorcontrib><creatorcontrib>Akulina, M. V.</creatorcontrib><creatorcontrib>Zorin, R. A.</creatorcontrib><creatorcontrib>Avacheva, T. G.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazikin, I. M.</au><au>Lapkin, M. M.</au><au>Akulina, M. V.</au><au>Zorin, R. A.</au><au>Avacheva, T. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>People’s individual characteristics and their significance for producing reliable forecasts of the effectiveness of purposeful physical activity</atitle><jtitle>Biomedical engineering</jtitle><stitle>Biomed Eng</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>57</volume><issue>4</issue><spage>291</spage><epage>294</epage><pages>291-294</pages><issn>0006-3398</issn><eissn>1573-8256</eissn><abstract>We show here that individual psychophysiological characteristics have particular influences on the effectiveness of physical activity. Cluster analysis, artificial neural network technology, and a multifactorial linear regression model were used to generate an algorithm for predicting the effectiveness of purposeful activities when attempting target standards in physical culture by university students. The results obtained here provide grounds for building reliable predictions to define the direction of physical training in young people.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10527-023-10318-3</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3398
ispartof Biomedical engineering, 2023-11, Vol.57 (4), p.291-294
issn 0006-3398
1573-8256
language eng
recordid cdi_proquest_journals_2918252253
source Springer Nature
subjects Algorithms
Artificial neural networks
Asymmetry
Biomaterials
Biomedical and Life Sciences
Biomedicine
Cluster analysis
Effectiveness
Engineering
Exercise
Forecasts and trends
Nervous system
Neural networks
Personal appearance
Physical activity
Physical fitness
Physical training
Physiology
Psychophysiology
Questionnaires
Regression models
Students
Surgery
Young adults
title People’s individual characteristics and their significance for producing reliable forecasts of the effectiveness of purposeful physical activity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=People%E2%80%99s%20individual%20characteristics%20and%20their%20significance%20for%20producing%20reliable%20forecasts%20of%20the%20effectiveness%20of%20purposeful%20physical%20activity&rft.jtitle=Biomedical%20engineering&rft.au=Mazikin,%20I.%20M.&rft.date=2023-11-01&rft.volume=57&rft.issue=4&rft.spage=291&rft.epage=294&rft.pages=291-294&rft.issn=0006-3398&rft.eissn=1573-8256&rft_id=info:doi/10.1007/s10527-023-10318-3&rft_dat=%3Cgale_proqu%3EA776202144%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-e54276fabb2451038871088c3120dc05c9a659515769b713976cbed68403a6803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918252253&rft_id=info:pmid/&rft_galeid=A776202144&rfr_iscdi=true