Loading…
People’s individual characteristics and their significance for producing reliable forecasts of the effectiveness of purposeful physical activity
We show here that individual psychophysiological characteristics have particular influences on the effectiveness of physical activity. Cluster analysis, artificial neural network technology, and a multifactorial linear regression model were used to generate an algorithm for predicting the effectiven...
Saved in:
Published in: | Biomedical engineering 2023-11, Vol.57 (4), p.291-294 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-e54276fabb2451038871088c3120dc05c9a659515769b713976cbed68403a6803 |
container_end_page | 294 |
container_issue | 4 |
container_start_page | 291 |
container_title | Biomedical engineering |
container_volume | 57 |
creator | Mazikin, I. M. Lapkin, M. M. Akulina, M. V. Zorin, R. A. Avacheva, T. G. |
description | We show here that individual psychophysiological characteristics have particular influences on the effectiveness of physical activity. Cluster analysis, artificial neural network technology, and a multifactorial linear regression model were used to generate an algorithm for predicting the effectiveness of purposeful activities when attempting target standards in physical culture by university students. The results obtained here provide grounds for building reliable predictions to define the direction of physical training in young people. |
doi_str_mv | 10.1007/s10527-023-10318-3 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918252253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A776202144</galeid><sourcerecordid>A776202144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-e54276fabb2451038871088c3120dc05c9a659515769b713976cbed68403a6803</originalsourceid><addsrcrecordid>eNp9kctq3DAUhk1podO0L9CVoKsunOpiWfIyhF4CgZZe1kKWj2YUPLKrI4fMrs_QXV4vT1LNTCEMlKKF0M_3n6Nz_qp6zeg5o1S9Q0YlVzXlomZUMF2LJ9WKSSVqzWX7tFpRSttaiE4_r14g3pSn1Jqvqt9fYJpHePh1jyTEIdyGYbEjcRubrMuQAubgkNg4kLyBkAiGdQw-OBsdED8lMqdpWFyIa5JgDLYfDzI4ixnJ5Pc2At6Dy-EWIuBBnJc0Twh-Gcm82WEpNxK7J0LevayeeTsivPp7n1U_Prz_fvmpvv788ery4rp2QrFcg2y4ar3te97IMrTWilGtnWCcDo5K19lWdrIsoe16xUSnWtfD0OqGCttqKs6qN8e6ZYKfC2A2N9OSYmlpeMfK3jiX4pFa2xFMiH7KZTPbgM5cKNVyylnTFOr8H1Q5A2yDmyL4UPQTw9sTQ2Ey3OW1XRDN1bevpyw_si5NiAm8mVPY2rQzjJp9_OYYvynxm0P8Zv9vcTRhgeMa0uN0_3H9AR0ks3k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918252253</pqid></control><display><type>article</type><title>People’s individual characteristics and their significance for producing reliable forecasts of the effectiveness of purposeful physical activity</title><source>Springer Nature</source><creator>Mazikin, I. M. ; Lapkin, M. M. ; Akulina, M. V. ; Zorin, R. A. ; Avacheva, T. G.</creator><creatorcontrib>Mazikin, I. M. ; Lapkin, M. M. ; Akulina, M. V. ; Zorin, R. A. ; Avacheva, T. G.</creatorcontrib><description>We show here that individual psychophysiological characteristics have particular influences on the effectiveness of physical activity. Cluster analysis, artificial neural network technology, and a multifactorial linear regression model were used to generate an algorithm for predicting the effectiveness of purposeful activities when attempting target standards in physical culture by university students. The results obtained here provide grounds for building reliable predictions to define the direction of physical training in young people.</description><identifier>ISSN: 0006-3398</identifier><identifier>EISSN: 1573-8256</identifier><identifier>DOI: 10.1007/s10527-023-10318-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial neural networks ; Asymmetry ; Biomaterials ; Biomedical and Life Sciences ; Biomedicine ; Cluster analysis ; Effectiveness ; Engineering ; Exercise ; Forecasts and trends ; Nervous system ; Neural networks ; Personal appearance ; Physical activity ; Physical fitness ; Physical training ; Physiology ; Psychophysiology ; Questionnaires ; Regression models ; Students ; Surgery ; Young adults</subject><ispartof>Biomedical engineering, 2023-11, Vol.57 (4), p.291-294</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c371t-e54276fabb2451038871088c3120dc05c9a659515769b713976cbed68403a6803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mazikin, I. M.</creatorcontrib><creatorcontrib>Lapkin, M. M.</creatorcontrib><creatorcontrib>Akulina, M. V.</creatorcontrib><creatorcontrib>Zorin, R. A.</creatorcontrib><creatorcontrib>Avacheva, T. G.</creatorcontrib><title>People’s individual characteristics and their significance for producing reliable forecasts of the effectiveness of purposeful physical activity</title><title>Biomedical engineering</title><addtitle>Biomed Eng</addtitle><description>We show here that individual psychophysiological characteristics have particular influences on the effectiveness of physical activity. Cluster analysis, artificial neural network technology, and a multifactorial linear regression model were used to generate an algorithm for predicting the effectiveness of purposeful activities when attempting target standards in physical culture by university students. The results obtained here provide grounds for building reliable predictions to define the direction of physical training in young people.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Asymmetry</subject><subject>Biomaterials</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cluster analysis</subject><subject>Effectiveness</subject><subject>Engineering</subject><subject>Exercise</subject><subject>Forecasts and trends</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Personal appearance</subject><subject>Physical activity</subject><subject>Physical fitness</subject><subject>Physical training</subject><subject>Physiology</subject><subject>Psychophysiology</subject><subject>Questionnaires</subject><subject>Regression models</subject><subject>Students</subject><subject>Surgery</subject><subject>Young adults</subject><issn>0006-3398</issn><issn>1573-8256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kctq3DAUhk1podO0L9CVoKsunOpiWfIyhF4CgZZe1kKWj2YUPLKrI4fMrs_QXV4vT1LNTCEMlKKF0M_3n6Nz_qp6zeg5o1S9Q0YlVzXlomZUMF2LJ9WKSSVqzWX7tFpRSttaiE4_r14g3pSn1Jqvqt9fYJpHePh1jyTEIdyGYbEjcRubrMuQAubgkNg4kLyBkAiGdQw-OBsdED8lMqdpWFyIa5JgDLYfDzI4ixnJ5Pc2At6Dy-EWIuBBnJc0Twh-Gcm82WEpNxK7J0LevayeeTsivPp7n1U_Prz_fvmpvv788ery4rp2QrFcg2y4ar3te97IMrTWilGtnWCcDo5K19lWdrIsoe16xUSnWtfD0OqGCttqKs6qN8e6ZYKfC2A2N9OSYmlpeMfK3jiX4pFa2xFMiH7KZTPbgM5cKNVyylnTFOr8H1Q5A2yDmyL4UPQTw9sTQ2Ey3OW1XRDN1bevpyw_si5NiAm8mVPY2rQzjJp9_OYYvynxm0P8Zv9vcTRhgeMa0uN0_3H9AR0ks3k</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Mazikin, I. M.</creator><creator>Lapkin, M. M.</creator><creator>Akulina, M. V.</creator><creator>Zorin, R. A.</creator><creator>Avacheva, T. G.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20231101</creationdate><title>People’s individual characteristics and their significance for producing reliable forecasts of the effectiveness of purposeful physical activity</title><author>Mazikin, I. M. ; Lapkin, M. M. ; Akulina, M. V. ; Zorin, R. A. ; Avacheva, T. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-e54276fabb2451038871088c3120dc05c9a659515769b713976cbed68403a6803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Asymmetry</topic><topic>Biomaterials</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cluster analysis</topic><topic>Effectiveness</topic><topic>Engineering</topic><topic>Exercise</topic><topic>Forecasts and trends</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Personal appearance</topic><topic>Physical activity</topic><topic>Physical fitness</topic><topic>Physical training</topic><topic>Physiology</topic><topic>Psychophysiology</topic><topic>Questionnaires</topic><topic>Regression models</topic><topic>Students</topic><topic>Surgery</topic><topic>Young adults</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazikin, I. M.</creatorcontrib><creatorcontrib>Lapkin, M. M.</creatorcontrib><creatorcontrib>Akulina, M. V.</creatorcontrib><creatorcontrib>Zorin, R. A.</creatorcontrib><creatorcontrib>Avacheva, T. G.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazikin, I. M.</au><au>Lapkin, M. M.</au><au>Akulina, M. V.</au><au>Zorin, R. A.</au><au>Avacheva, T. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>People’s individual characteristics and their significance for producing reliable forecasts of the effectiveness of purposeful physical activity</atitle><jtitle>Biomedical engineering</jtitle><stitle>Biomed Eng</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>57</volume><issue>4</issue><spage>291</spage><epage>294</epage><pages>291-294</pages><issn>0006-3398</issn><eissn>1573-8256</eissn><abstract>We show here that individual psychophysiological characteristics have particular influences on the effectiveness of physical activity. Cluster analysis, artificial neural network technology, and a multifactorial linear regression model were used to generate an algorithm for predicting the effectiveness of purposeful activities when attempting target standards in physical culture by university students. The results obtained here provide grounds for building reliable predictions to define the direction of physical training in young people.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10527-023-10318-3</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3398 |
ispartof | Biomedical engineering, 2023-11, Vol.57 (4), p.291-294 |
issn | 0006-3398 1573-8256 |
language | eng |
recordid | cdi_proquest_journals_2918252253 |
source | Springer Nature |
subjects | Algorithms Artificial neural networks Asymmetry Biomaterials Biomedical and Life Sciences Biomedicine Cluster analysis Effectiveness Engineering Exercise Forecasts and trends Nervous system Neural networks Personal appearance Physical activity Physical fitness Physical training Physiology Psychophysiology Questionnaires Regression models Students Surgery Young adults |
title | People’s individual characteristics and their significance for producing reliable forecasts of the effectiveness of purposeful physical activity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=People%E2%80%99s%20individual%20characteristics%20and%20their%20significance%20for%20producing%20reliable%20forecasts%20of%20the%20effectiveness%20of%20purposeful%20physical%20activity&rft.jtitle=Biomedical%20engineering&rft.au=Mazikin,%20I.%20M.&rft.date=2023-11-01&rft.volume=57&rft.issue=4&rft.spage=291&rft.epage=294&rft.pages=291-294&rft.issn=0006-3398&rft.eissn=1573-8256&rft_id=info:doi/10.1007/s10527-023-10318-3&rft_dat=%3Cgale_proqu%3EA776202144%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-e54276fabb2451038871088c3120dc05c9a659515769b713976cbed68403a6803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918252253&rft_id=info:pmid/&rft_galeid=A776202144&rfr_iscdi=true |