Loading…

Quantum corrections to semiclassical transport in nanoscale devices using entropy principles

We derive a modification of the semiclassical Fermi Golden Rule collision operator based on quantum thermodynamic principles. The resulting operator is nonlocal in space and acknowledges the presence of steep potential gradients and potential barriers. The resulting quantum mechanical transport equa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational electronics 2007-09, Vol.6 (1-3), p.117-120
Main Authors: Bourgade, J. P., Degond, P., Mauser, N., Ringhofer, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c225t-8eb200259df974f84950649ab0e0b716c8cad0146fc48f5520c9075f422bc2453
container_end_page 120
container_issue 1-3
container_start_page 117
container_title Journal of computational electronics
container_volume 6
creator Bourgade, J. P.
Degond, P.
Mauser, N.
Ringhofer, C.
description We derive a modification of the semiclassical Fermi Golden Rule collision operator based on quantum thermodynamic principles. The resulting operator is nonlocal in space and acknowledges the presence of steep potential gradients and potential barriers. The resulting quantum mechanical transport equation—the Wigner quantum Boltzmann equation—increases the corresponding quantum mechanical entropy and is therefore well posed.
doi_str_mv 10.1007/s10825-006-0062-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918264929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918264929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-8eb200259df974f84950649ab0e0b716c8cad0146fc48f5520c9075f422bc2453</originalsourceid><addsrcrecordid>eNotkE9LxDAQxYMouK5-AG8Bz9XJbNKmR1n8Bwsi6E0IaTaVLLtJzaSC396W9fCYYXi8efwYuxZwKwCaOxKgUVUA9SysxAlbCNVgpcWqOZ33uq00oDpnF0Q7AASUYsE-30Yby3jgLuXsXQkpEi-Jkz8Et7dEwdk9L9lGGlIuPEQebUw0XT3f-p_gPPGRQvziPpachl8-5BBdGPaeLtlZb_fkr_7nkn08Pryvn6vN69PL-n5TOURVKu07nAqpdtu3jey1bBXUsrUdeOgaUTvt7BaErHsnda8UgmuhUb1E7BxKtVqym2PukNP36KmYXRpznF4abIXGKQzbySWOLpcTUfa9mZoebP41AswM0RwhmgngLDRi9QeTC2W_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918264929</pqid></control><display><type>article</type><title>Quantum corrections to semiclassical transport in nanoscale devices using entropy principles</title><source>Springer Nature</source><creator>Bourgade, J. P. ; Degond, P. ; Mauser, N. ; Ringhofer, C.</creator><creatorcontrib>Bourgade, J. P. ; Degond, P. ; Mauser, N. ; Ringhofer, C.</creatorcontrib><description>We derive a modification of the semiclassical Fermi Golden Rule collision operator based on quantum thermodynamic principles. The resulting operator is nonlocal in space and acknowledges the presence of steep potential gradients and potential barriers. The resulting quantum mechanical transport equation—the Wigner quantum Boltzmann equation—increases the corresponding quantum mechanical entropy and is therefore well posed.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-006-0062-1</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Boltzmann transport equation ; Entropy ; Nanotechnology devices ; Potential gradient ; Principles ; Quantum mechanics ; Transport equations</subject><ispartof>Journal of computational electronics, 2007-09, Vol.6 (1-3), p.117-120</ispartof><rights>2006 2006.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-8eb200259df974f84950649ab0e0b716c8cad0146fc48f5520c9075f422bc2453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Bourgade, J. P.</creatorcontrib><creatorcontrib>Degond, P.</creatorcontrib><creatorcontrib>Mauser, N.</creatorcontrib><creatorcontrib>Ringhofer, C.</creatorcontrib><title>Quantum corrections to semiclassical transport in nanoscale devices using entropy principles</title><title>Journal of computational electronics</title><description>We derive a modification of the semiclassical Fermi Golden Rule collision operator based on quantum thermodynamic principles. The resulting operator is nonlocal in space and acknowledges the presence of steep potential gradients and potential barriers. The resulting quantum mechanical transport equation—the Wigner quantum Boltzmann equation—increases the corresponding quantum mechanical entropy and is therefore well posed.</description><subject>Boltzmann transport equation</subject><subject>Entropy</subject><subject>Nanotechnology devices</subject><subject>Potential gradient</subject><subject>Principles</subject><subject>Quantum mechanics</subject><subject>Transport equations</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotkE9LxDAQxYMouK5-AG8Bz9XJbNKmR1n8Bwsi6E0IaTaVLLtJzaSC396W9fCYYXi8efwYuxZwKwCaOxKgUVUA9SysxAlbCNVgpcWqOZ33uq00oDpnF0Q7AASUYsE-30Yby3jgLuXsXQkpEi-Jkz8Et7dEwdk9L9lGGlIuPEQebUw0XT3f-p_gPPGRQvziPpachl8-5BBdGPaeLtlZb_fkr_7nkn08Pryvn6vN69PL-n5TOURVKu07nAqpdtu3jey1bBXUsrUdeOgaUTvt7BaErHsnda8UgmuhUb1E7BxKtVqym2PukNP36KmYXRpznF4abIXGKQzbySWOLpcTUfa9mZoebP41AswM0RwhmgngLDRi9QeTC2W_</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Bourgade, J. P.</creator><creator>Degond, P.</creator><creator>Mauser, N.</creator><creator>Ringhofer, C.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>200709</creationdate><title>Quantum corrections to semiclassical transport in nanoscale devices using entropy principles</title><author>Bourgade, J. P. ; Degond, P. ; Mauser, N. ; Ringhofer, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-8eb200259df974f84950649ab0e0b716c8cad0146fc48f5520c9075f422bc2453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Boltzmann transport equation</topic><topic>Entropy</topic><topic>Nanotechnology devices</topic><topic>Potential gradient</topic><topic>Principles</topic><topic>Quantum mechanics</topic><topic>Transport equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourgade, J. P.</creatorcontrib><creatorcontrib>Degond, P.</creatorcontrib><creatorcontrib>Mauser, N.</creatorcontrib><creatorcontrib>Ringhofer, C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourgade, J. P.</au><au>Degond, P.</au><au>Mauser, N.</au><au>Ringhofer, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum corrections to semiclassical transport in nanoscale devices using entropy principles</atitle><jtitle>Journal of computational electronics</jtitle><date>2007-09</date><risdate>2007</risdate><volume>6</volume><issue>1-3</issue><spage>117</spage><epage>120</epage><pages>117-120</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>We derive a modification of the semiclassical Fermi Golden Rule collision operator based on quantum thermodynamic principles. The resulting operator is nonlocal in space and acknowledges the presence of steep potential gradients and potential barriers. The resulting quantum mechanical transport equation—the Wigner quantum Boltzmann equation—increases the corresponding quantum mechanical entropy and is therefore well posed.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10825-006-0062-1</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1569-8025
ispartof Journal of computational electronics, 2007-09, Vol.6 (1-3), p.117-120
issn 1569-8025
1572-8137
language eng
recordid cdi_proquest_journals_2918264929
source Springer Nature
subjects Boltzmann transport equation
Entropy
Nanotechnology devices
Potential gradient
Principles
Quantum mechanics
Transport equations
title Quantum corrections to semiclassical transport in nanoscale devices using entropy principles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20corrections%20to%20semiclassical%20transport%20in%20nanoscale%20devices%20using%20entropy%20principles&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Bourgade,%20J.%20P.&rft.date=2007-09&rft.volume=6&rft.issue=1-3&rft.spage=117&rft.epage=120&rft.pages=117-120&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-006-0062-1&rft_dat=%3Cproquest_cross%3E2918264929%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c225t-8eb200259df974f84950649ab0e0b716c8cad0146fc48f5520c9075f422bc2453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918264929&rft_id=info:pmid/&rfr_iscdi=true