Loading…
Quantum corrections to semiclassical transport in nanoscale devices using entropy principles
We derive a modification of the semiclassical Fermi Golden Rule collision operator based on quantum thermodynamic principles. The resulting operator is nonlocal in space and acknowledges the presence of steep potential gradients and potential barriers. The resulting quantum mechanical transport equa...
Saved in:
Published in: | Journal of computational electronics 2007-09, Vol.6 (1-3), p.117-120 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c225t-8eb200259df974f84950649ab0e0b716c8cad0146fc48f5520c9075f422bc2453 |
container_end_page | 120 |
container_issue | 1-3 |
container_start_page | 117 |
container_title | Journal of computational electronics |
container_volume | 6 |
creator | Bourgade, J. P. Degond, P. Mauser, N. Ringhofer, C. |
description | We derive a modification of the semiclassical Fermi Golden Rule collision operator based on quantum thermodynamic principles. The resulting operator is nonlocal in space and acknowledges the presence of steep potential gradients and potential barriers. The resulting quantum mechanical transport equation—the Wigner quantum Boltzmann equation—increases the corresponding quantum mechanical entropy and is therefore well posed. |
doi_str_mv | 10.1007/s10825-006-0062-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918264929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918264929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-8eb200259df974f84950649ab0e0b716c8cad0146fc48f5520c9075f422bc2453</originalsourceid><addsrcrecordid>eNotkE9LxDAQxYMouK5-AG8Bz9XJbNKmR1n8Bwsi6E0IaTaVLLtJzaSC396W9fCYYXi8efwYuxZwKwCaOxKgUVUA9SysxAlbCNVgpcWqOZ33uq00oDpnF0Q7AASUYsE-30Yby3jgLuXsXQkpEi-Jkz8Et7dEwdk9L9lGGlIuPEQebUw0XT3f-p_gPPGRQvziPpachl8-5BBdGPaeLtlZb_fkr_7nkn08Pryvn6vN69PL-n5TOURVKu07nAqpdtu3jey1bBXUsrUdeOgaUTvt7BaErHsnda8UgmuhUb1E7BxKtVqym2PukNP36KmYXRpznF4abIXGKQzbySWOLpcTUfa9mZoebP41AswM0RwhmgngLDRi9QeTC2W_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918264929</pqid></control><display><type>article</type><title>Quantum corrections to semiclassical transport in nanoscale devices using entropy principles</title><source>Springer Nature</source><creator>Bourgade, J. P. ; Degond, P. ; Mauser, N. ; Ringhofer, C.</creator><creatorcontrib>Bourgade, J. P. ; Degond, P. ; Mauser, N. ; Ringhofer, C.</creatorcontrib><description>We derive a modification of the semiclassical Fermi Golden Rule collision operator based on quantum thermodynamic principles. The resulting operator is nonlocal in space and acknowledges the presence of steep potential gradients and potential barriers. The resulting quantum mechanical transport equation—the Wigner quantum Boltzmann equation—increases the corresponding quantum mechanical entropy and is therefore well posed.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-006-0062-1</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Boltzmann transport equation ; Entropy ; Nanotechnology devices ; Potential gradient ; Principles ; Quantum mechanics ; Transport equations</subject><ispartof>Journal of computational electronics, 2007-09, Vol.6 (1-3), p.117-120</ispartof><rights>2006 2006.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-8eb200259df974f84950649ab0e0b716c8cad0146fc48f5520c9075f422bc2453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Bourgade, J. P.</creatorcontrib><creatorcontrib>Degond, P.</creatorcontrib><creatorcontrib>Mauser, N.</creatorcontrib><creatorcontrib>Ringhofer, C.</creatorcontrib><title>Quantum corrections to semiclassical transport in nanoscale devices using entropy principles</title><title>Journal of computational electronics</title><description>We derive a modification of the semiclassical Fermi Golden Rule collision operator based on quantum thermodynamic principles. The resulting operator is nonlocal in space and acknowledges the presence of steep potential gradients and potential barriers. The resulting quantum mechanical transport equation—the Wigner quantum Boltzmann equation—increases the corresponding quantum mechanical entropy and is therefore well posed.</description><subject>Boltzmann transport equation</subject><subject>Entropy</subject><subject>Nanotechnology devices</subject><subject>Potential gradient</subject><subject>Principles</subject><subject>Quantum mechanics</subject><subject>Transport equations</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotkE9LxDAQxYMouK5-AG8Bz9XJbNKmR1n8Bwsi6E0IaTaVLLtJzaSC396W9fCYYXi8efwYuxZwKwCaOxKgUVUA9SysxAlbCNVgpcWqOZ33uq00oDpnF0Q7AASUYsE-30Yby3jgLuXsXQkpEi-Jkz8Et7dEwdk9L9lGGlIuPEQebUw0XT3f-p_gPPGRQvziPpachl8-5BBdGPaeLtlZb_fkr_7nkn08Pryvn6vN69PL-n5TOURVKu07nAqpdtu3jey1bBXUsrUdeOgaUTvt7BaErHsnda8UgmuhUb1E7BxKtVqym2PukNP36KmYXRpznF4abIXGKQzbySWOLpcTUfa9mZoebP41AswM0RwhmgngLDRi9QeTC2W_</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Bourgade, J. P.</creator><creator>Degond, P.</creator><creator>Mauser, N.</creator><creator>Ringhofer, C.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>200709</creationdate><title>Quantum corrections to semiclassical transport in nanoscale devices using entropy principles</title><author>Bourgade, J. P. ; Degond, P. ; Mauser, N. ; Ringhofer, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-8eb200259df974f84950649ab0e0b716c8cad0146fc48f5520c9075f422bc2453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Boltzmann transport equation</topic><topic>Entropy</topic><topic>Nanotechnology devices</topic><topic>Potential gradient</topic><topic>Principles</topic><topic>Quantum mechanics</topic><topic>Transport equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourgade, J. P.</creatorcontrib><creatorcontrib>Degond, P.</creatorcontrib><creatorcontrib>Mauser, N.</creatorcontrib><creatorcontrib>Ringhofer, C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourgade, J. P.</au><au>Degond, P.</au><au>Mauser, N.</au><au>Ringhofer, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum corrections to semiclassical transport in nanoscale devices using entropy principles</atitle><jtitle>Journal of computational electronics</jtitle><date>2007-09</date><risdate>2007</risdate><volume>6</volume><issue>1-3</issue><spage>117</spage><epage>120</epage><pages>117-120</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>We derive a modification of the semiclassical Fermi Golden Rule collision operator based on quantum thermodynamic principles. The resulting operator is nonlocal in space and acknowledges the presence of steep potential gradients and potential barriers. The resulting quantum mechanical transport equation—the Wigner quantum Boltzmann equation—increases the corresponding quantum mechanical entropy and is therefore well posed.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10825-006-0062-1</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-8025 |
ispartof | Journal of computational electronics, 2007-09, Vol.6 (1-3), p.117-120 |
issn | 1569-8025 1572-8137 |
language | eng |
recordid | cdi_proquest_journals_2918264929 |
source | Springer Nature |
subjects | Boltzmann transport equation Entropy Nanotechnology devices Potential gradient Principles Quantum mechanics Transport equations |
title | Quantum corrections to semiclassical transport in nanoscale devices using entropy principles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20corrections%20to%20semiclassical%20transport%20in%20nanoscale%20devices%20using%20entropy%20principles&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Bourgade,%20J.%20P.&rft.date=2007-09&rft.volume=6&rft.issue=1-3&rft.spage=117&rft.epage=120&rft.pages=117-120&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-006-0062-1&rft_dat=%3Cproquest_cross%3E2918264929%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c225t-8eb200259df974f84950649ab0e0b716c8cad0146fc48f5520c9075f422bc2453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918264929&rft_id=info:pmid/&rfr_iscdi=true |