Loading…
The design, analysis, and simulation of an optimized all-optical AND gate using a Y-shaped plasmonic waveguide for high-speed computing devices
All-optical logic gates have proven their significance in the digital world for the implementation of high-speed computations. We propose herein a novel structure for an all-optical AND gate using the concept of a power combiner based on a Y-shaped metal–insulator–metal waveguide with a 4 µm × 7 µm...
Saved in:
Published in: | Journal of computational electronics 2021-10, Vol.20 (5), p.1892-1899 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | All-optical logic gates have proven their significance in the digital world for the implementation of high-speed computations. We propose herein a novel structure for an all-optical AND gate using the concept of a power combiner based on a Y-shaped metal–insulator–metal waveguide with a 4 µm × 7 µm footprint. This design works based on the principle of linear interference. The insertion loss and extinction ratio of the design are given as 0.165 and 14.11 dB, respectively. The design is analyzed by using the finite-difference time-domain (FDTD) method and verified using MATLAB. The minimized structure can be used to design any complex logic circuit to achieve better performance in the future. |
---|---|
ISSN: | 1569-8025 1572-8137 |
DOI: | 10.1007/s10825-021-01748-x |