Loading…
Designing digital circuits using 3D nanomagnetic logic architectures
The approach to designing digital circuits using three-dimensional (3D) perpendicular nanomagnetic logic (pNML) is thoroughly investigated. Nanomagnetic logic (NML) technology eventually optimizes the circuit performance in comparison with conventional metal–oxide–semiconductor (MOS) technology, whi...
Saved in:
Published in: | Journal of computational electronics 2021-06, Vol.20 (3), p.1310-1325 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The approach to designing digital circuits using three-dimensional (3D) perpendicular nanomagnetic logic (pNML) is thoroughly investigated. Nanomagnetic logic (NML) technology eventually optimizes the circuit performance in comparison with conventional metal–oxide–semiconductor (MOS) technology, which suffers from the hot carrier, velocity saturation, and short-channel effects, which may considerably degrade device performance. In contrast, nanomagnetic logic is immune to radiation; it behaves as nonvolatile memory and shows zero leakage current, as required for use in high-speed and low-cost nanoelectronics applications. In this paper, novel and organized designs, e.g., for 3D Ex-OR, parity generator, parity checker, multiplexer, and arithmetic logic unit (ALU) functionality, are synthesized using pNML technology. Previous designs are not compact in terms of delay, layer count, or bounded area. To overcome this, new designs for the mentioned functionalities are proposed based on pNML with smaller area and lower latency compared with previous circuits. |
---|---|
ISSN: | 1569-8025 1572-8137 |
DOI: | 10.1007/s10825-020-01647-7 |