Loading…

DC performance analysis of III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon FET circuits with quantum mechanical effects

In this article, the electrical behavior of laterally grown novel short-channel III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon field effect transistor (DG-TM-PiN-TGNFET) has been studied based on their quantum mechanical effect (QME). Firstly, by varying the d...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational electronics 2021-04, Vol.20 (2), p.855-863
Main Authors: Dutta, Ritam, Subash, T. D., Paitya, Nitai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-58d57be958685031771a9da99220d2f32013e0792bfdef1406bb11cb03222bd13
cites cdi_FETCH-LOGICAL-c319t-58d57be958685031771a9da99220d2f32013e0792bfdef1406bb11cb03222bd13
container_end_page 863
container_issue 2
container_start_page 855
container_title Journal of computational electronics
container_volume 20
creator Dutta, Ritam
Subash, T. D.
Paitya, Nitai
description In this article, the electrical behavior of laterally grown novel short-channel III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon field effect transistor (DG-TM-PiN-TGNFET) has been studied based on their quantum mechanical effect (QME). Firstly, by varying the device process parameters of the novel TFET structure, the DC parameter responses viz. threshold voltage, electric field and surface potential are investigated. Further these responses are analyzed by considering the QME for better device performance. Two-dimensional numerical device simulator (SILVACO TCAD) tool is used for simulating the quantum and semi-classical models. The simulation work has been validated by extensive analytical modeling, that reflected in our accurate graphical representations. Finally, to investigate the QME effect in circuit level applications, an TFET inverter circuit has been designed and its DC performance viz. power dissipation and propagation delay analysis is performed.
doi_str_mv 10.1007/s10825-020-01649-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918275630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918275630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-58d57be958685031771a9da99220d2f32013e0792bfdef1406bb11cb03222bd13</originalsourceid><addsrcrecordid>eNp9kc9u1DAYxCMEEqXwApwscQ71Z6-T-IgWKCtVUKktV8t2Pu-6SpzUf1T1xjvwAjwbT1KXReLGaeYwvznMNM1boO-B0v4sAR2YaCmjLYVuI1vxrDkB0bN2AN4_f_KdbAfKxMvmVUq3tCbZBk6aXx-3ZMXoljjrYJHooKeH5BNZHNntdr9__Px-duXJATPGJeVYbC4RybgUMyHZ64wkR79WP1cfvZ7Ipf9KcgkBJx_2ZB_1esCAJOiwRG_MEsjnT9fE-miLz4nc-3wgd0WHXGYyoz3o4G2tQefQ5vS6eeH0lPDNXz1tbiq-_dJefDvfbT9ctJaDzK0YRtEblGLoBkE59D1oOWopGaMjc5xR4Eh7yYwb0cGGdsYAWEM5Y8yMwE-bd8feNS53BVNWt0uJdY2kmISB9aLjtKbYMWXrGimiU2v0s44PCqh6ekIdn1B1X_XnCSUqxI9QquGwx_iv-j_UI5w6jtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918275630</pqid></control><display><type>article</type><title>DC performance analysis of III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon FET circuits with quantum mechanical effects</title><source>Springer Link</source><creator>Dutta, Ritam ; Subash, T. D. ; Paitya, Nitai</creator><creatorcontrib>Dutta, Ritam ; Subash, T. D. ; Paitya, Nitai</creatorcontrib><description>In this article, the electrical behavior of laterally grown novel short-channel III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon field effect transistor (DG-TM-PiN-TGNFET) has been studied based on their quantum mechanical effect (QME). Firstly, by varying the device process parameters of the novel TFET structure, the DC parameter responses viz. threshold voltage, electric field and surface potential are investigated. Further these responses are analyzed by considering the QME for better device performance. Two-dimensional numerical device simulator (SILVACO TCAD) tool is used for simulating the quantum and semi-classical models. The simulation work has been validated by extensive analytical modeling, that reflected in our accurate graphical representations. Finally, to investigate the QME effect in circuit level applications, an TFET inverter circuit has been designed and its DC performance viz. power dissipation and propagation delay analysis is performed.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-020-01649-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Circuit design ; Electric fields ; Electrical Engineering ; Electrons ; Energy dissipation ; Engineering ; Field effect transistors ; Graphene ; Graphical representations ; Heterostructures ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical models ; Mechanical Engineering ; Nanoribbons ; Optical and Electronic Materials ; Process parameters ; Quantum mechanics ; Semiconductor devices ; Simulation ; Theoretical ; Threshold voltage ; Transistors ; Tunnels</subject><ispartof>Journal of computational electronics, 2021-04, Vol.20 (2), p.855-863</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-58d57be958685031771a9da99220d2f32013e0792bfdef1406bb11cb03222bd13</citedby><cites>FETCH-LOGICAL-c319t-58d57be958685031771a9da99220d2f32013e0792bfdef1406bb11cb03222bd13</cites><orcidid>0000-0003-3089-778X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dutta, Ritam</creatorcontrib><creatorcontrib>Subash, T. D.</creatorcontrib><creatorcontrib>Paitya, Nitai</creatorcontrib><title>DC performance analysis of III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon FET circuits with quantum mechanical effects</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>In this article, the electrical behavior of laterally grown novel short-channel III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon field effect transistor (DG-TM-PiN-TGNFET) has been studied based on their quantum mechanical effect (QME). Firstly, by varying the device process parameters of the novel TFET structure, the DC parameter responses viz. threshold voltage, electric field and surface potential are investigated. Further these responses are analyzed by considering the QME for better device performance. Two-dimensional numerical device simulator (SILVACO TCAD) tool is used for simulating the quantum and semi-classical models. The simulation work has been validated by extensive analytical modeling, that reflected in our accurate graphical representations. Finally, to investigate the QME effect in circuit level applications, an TFET inverter circuit has been designed and its DC performance viz. power dissipation and propagation delay analysis is performed.</description><subject>Circuit design</subject><subject>Electric fields</subject><subject>Electrical Engineering</subject><subject>Electrons</subject><subject>Energy dissipation</subject><subject>Engineering</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>Graphical representations</subject><subject>Heterostructures</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Nanoribbons</subject><subject>Optical and Electronic Materials</subject><subject>Process parameters</subject><subject>Quantum mechanics</subject><subject>Semiconductor devices</subject><subject>Simulation</subject><subject>Theoretical</subject><subject>Threshold voltage</subject><subject>Transistors</subject><subject>Tunnels</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAYxCMEEqXwApwscQ71Z6-T-IgWKCtVUKktV8t2Pu-6SpzUf1T1xjvwAjwbT1KXReLGaeYwvznMNM1boO-B0v4sAR2YaCmjLYVuI1vxrDkB0bN2AN4_f_KdbAfKxMvmVUq3tCbZBk6aXx-3ZMXoljjrYJHooKeH5BNZHNntdr9__Px-duXJATPGJeVYbC4RybgUMyHZ64wkR79WP1cfvZ7Ipf9KcgkBJx_2ZB_1esCAJOiwRG_MEsjnT9fE-miLz4nc-3wgd0WHXGYyoz3o4G2tQefQ5vS6eeH0lPDNXz1tbiq-_dJefDvfbT9ctJaDzK0YRtEblGLoBkE59D1oOWopGaMjc5xR4Eh7yYwb0cGGdsYAWEM5Y8yMwE-bd8feNS53BVNWt0uJdY2kmISB9aLjtKbYMWXrGimiU2v0s44PCqh6ekIdn1B1X_XnCSUqxI9QquGwx_iv-j_UI5w6jtQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Dutta, Ritam</creator><creator>Subash, T. D.</creator><creator>Paitya, Nitai</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3089-778X</orcidid></search><sort><creationdate>20210401</creationdate><title>DC performance analysis of III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon FET circuits with quantum mechanical effects</title><author>Dutta, Ritam ; Subash, T. D. ; Paitya, Nitai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-58d57be958685031771a9da99220d2f32013e0792bfdef1406bb11cb03222bd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Circuit design</topic><topic>Electric fields</topic><topic>Electrical Engineering</topic><topic>Electrons</topic><topic>Energy dissipation</topic><topic>Engineering</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>Graphical representations</topic><topic>Heterostructures</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Nanoribbons</topic><topic>Optical and Electronic Materials</topic><topic>Process parameters</topic><topic>Quantum mechanics</topic><topic>Semiconductor devices</topic><topic>Simulation</topic><topic>Theoretical</topic><topic>Threshold voltage</topic><topic>Transistors</topic><topic>Tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Ritam</creatorcontrib><creatorcontrib>Subash, T. D.</creatorcontrib><creatorcontrib>Paitya, Nitai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Ritam</au><au>Subash, T. D.</au><au>Paitya, Nitai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DC performance analysis of III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon FET circuits with quantum mechanical effects</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>20</volume><issue>2</issue><spage>855</spage><epage>863</epage><pages>855-863</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>In this article, the electrical behavior of laterally grown novel short-channel III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon field effect transistor (DG-TM-PiN-TGNFET) has been studied based on their quantum mechanical effect (QME). Firstly, by varying the device process parameters of the novel TFET structure, the DC parameter responses viz. threshold voltage, electric field and surface potential are investigated. Further these responses are analyzed by considering the QME for better device performance. Two-dimensional numerical device simulator (SILVACO TCAD) tool is used for simulating the quantum and semi-classical models. The simulation work has been validated by extensive analytical modeling, that reflected in our accurate graphical representations. Finally, to investigate the QME effect in circuit level applications, an TFET inverter circuit has been designed and its DC performance viz. power dissipation and propagation delay analysis is performed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10825-020-01649-5</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3089-778X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1569-8025
ispartof Journal of computational electronics, 2021-04, Vol.20 (2), p.855-863
issn 1569-8025
1572-8137
language eng
recordid cdi_proquest_journals_2918275630
source Springer Link
subjects Circuit design
Electric fields
Electrical Engineering
Electrons
Energy dissipation
Engineering
Field effect transistors
Graphene
Graphical representations
Heterostructures
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical models
Mechanical Engineering
Nanoribbons
Optical and Electronic Materials
Process parameters
Quantum mechanics
Semiconductor devices
Simulation
Theoretical
Threshold voltage
Transistors
Tunnels
title DC performance analysis of III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon FET circuits with quantum mechanical effects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DC%20performance%20analysis%20of%20III%E2%80%93V/Si%20heterostructure%20double%20gate%20triple%20material%20PiN%20tunneling%20graphene%20nanoribbon%20FET%20circuits%20with%20quantum%20mechanical%20effects&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Dutta,%20Ritam&rft.date=2021-04-01&rft.volume=20&rft.issue=2&rft.spage=855&rft.epage=863&rft.pages=855-863&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-020-01649-5&rft_dat=%3Cproquest_cross%3E2918275630%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-58d57be958685031771a9da99220d2f32013e0792bfdef1406bb11cb03222bd13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918275630&rft_id=info:pmid/&rfr_iscdi=true