Loading…
DC performance analysis of III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon FET circuits with quantum mechanical effects
In this article, the electrical behavior of laterally grown novel short-channel III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon field effect transistor (DG-TM-PiN-TGNFET) has been studied based on their quantum mechanical effect (QME). Firstly, by varying the d...
Saved in:
Published in: | Journal of computational electronics 2021-04, Vol.20 (2), p.855-863 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-58d57be958685031771a9da99220d2f32013e0792bfdef1406bb11cb03222bd13 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-58d57be958685031771a9da99220d2f32013e0792bfdef1406bb11cb03222bd13 |
container_end_page | 863 |
container_issue | 2 |
container_start_page | 855 |
container_title | Journal of computational electronics |
container_volume | 20 |
creator | Dutta, Ritam Subash, T. D. Paitya, Nitai |
description | In this article, the electrical behavior of laterally grown novel short-channel III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon field effect transistor (DG-TM-PiN-TGNFET) has been studied based on their quantum mechanical effect (QME). Firstly, by varying the device process parameters of the novel TFET structure, the DC parameter responses viz. threshold voltage, electric field and surface potential are investigated. Further these responses are analyzed by considering the QME for better device performance. Two-dimensional numerical device simulator (SILVACO TCAD) tool is used for simulating the quantum and semi-classical models. The simulation work has been validated by extensive analytical modeling, that reflected in our accurate graphical representations. Finally, to investigate the QME effect in circuit level applications, an TFET inverter circuit has been designed and its DC performance viz. power dissipation and propagation delay analysis is performed. |
doi_str_mv | 10.1007/s10825-020-01649-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918275630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918275630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-58d57be958685031771a9da99220d2f32013e0792bfdef1406bb11cb03222bd13</originalsourceid><addsrcrecordid>eNp9kc9u1DAYxCMEEqXwApwscQ71Z6-T-IgWKCtVUKktV8t2Pu-6SpzUf1T1xjvwAjwbT1KXReLGaeYwvznMNM1boO-B0v4sAR2YaCmjLYVuI1vxrDkB0bN2AN4_f_KdbAfKxMvmVUq3tCbZBk6aXx-3ZMXoljjrYJHooKeH5BNZHNntdr9__Px-duXJATPGJeVYbC4RybgUMyHZ64wkR79WP1cfvZ7Ipf9KcgkBJx_2ZB_1esCAJOiwRG_MEsjnT9fE-miLz4nc-3wgd0WHXGYyoz3o4G2tQefQ5vS6eeH0lPDNXz1tbiq-_dJefDvfbT9ctJaDzK0YRtEblGLoBkE59D1oOWopGaMjc5xR4Eh7yYwb0cGGdsYAWEM5Y8yMwE-bd8feNS53BVNWt0uJdY2kmISB9aLjtKbYMWXrGimiU2v0s44PCqh6ekIdn1B1X_XnCSUqxI9QquGwx_iv-j_UI5w6jtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918275630</pqid></control><display><type>article</type><title>DC performance analysis of III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon FET circuits with quantum mechanical effects</title><source>Springer Link</source><creator>Dutta, Ritam ; Subash, T. D. ; Paitya, Nitai</creator><creatorcontrib>Dutta, Ritam ; Subash, T. D. ; Paitya, Nitai</creatorcontrib><description>In this article, the electrical behavior of laterally grown novel short-channel III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon field effect transistor (DG-TM-PiN-TGNFET) has been studied based on their quantum mechanical effect (QME). Firstly, by varying the device process parameters of the novel TFET structure, the DC parameter responses viz. threshold voltage, electric field and surface potential are investigated. Further these responses are analyzed by considering the QME for better device performance. Two-dimensional numerical device simulator (SILVACO TCAD) tool is used for simulating the quantum and semi-classical models. The simulation work has been validated by extensive analytical modeling, that reflected in our accurate graphical representations. Finally, to investigate the QME effect in circuit level applications, an TFET inverter circuit has been designed and its DC performance viz. power dissipation and propagation delay analysis is performed.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-020-01649-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Circuit design ; Electric fields ; Electrical Engineering ; Electrons ; Energy dissipation ; Engineering ; Field effect transistors ; Graphene ; Graphical representations ; Heterostructures ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical models ; Mechanical Engineering ; Nanoribbons ; Optical and Electronic Materials ; Process parameters ; Quantum mechanics ; Semiconductor devices ; Simulation ; Theoretical ; Threshold voltage ; Transistors ; Tunnels</subject><ispartof>Journal of computational electronics, 2021-04, Vol.20 (2), p.855-863</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-58d57be958685031771a9da99220d2f32013e0792bfdef1406bb11cb03222bd13</citedby><cites>FETCH-LOGICAL-c319t-58d57be958685031771a9da99220d2f32013e0792bfdef1406bb11cb03222bd13</cites><orcidid>0000-0003-3089-778X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dutta, Ritam</creatorcontrib><creatorcontrib>Subash, T. D.</creatorcontrib><creatorcontrib>Paitya, Nitai</creatorcontrib><title>DC performance analysis of III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon FET circuits with quantum mechanical effects</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>In this article, the electrical behavior of laterally grown novel short-channel III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon field effect transistor (DG-TM-PiN-TGNFET) has been studied based on their quantum mechanical effect (QME). Firstly, by varying the device process parameters of the novel TFET structure, the DC parameter responses viz. threshold voltage, electric field and surface potential are investigated. Further these responses are analyzed by considering the QME for better device performance. Two-dimensional numerical device simulator (SILVACO TCAD) tool is used for simulating the quantum and semi-classical models. The simulation work has been validated by extensive analytical modeling, that reflected in our accurate graphical representations. Finally, to investigate the QME effect in circuit level applications, an TFET inverter circuit has been designed and its DC performance viz. power dissipation and propagation delay analysis is performed.</description><subject>Circuit design</subject><subject>Electric fields</subject><subject>Electrical Engineering</subject><subject>Electrons</subject><subject>Energy dissipation</subject><subject>Engineering</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>Graphical representations</subject><subject>Heterostructures</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Nanoribbons</subject><subject>Optical and Electronic Materials</subject><subject>Process parameters</subject><subject>Quantum mechanics</subject><subject>Semiconductor devices</subject><subject>Simulation</subject><subject>Theoretical</subject><subject>Threshold voltage</subject><subject>Transistors</subject><subject>Tunnels</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAYxCMEEqXwApwscQ71Z6-T-IgWKCtVUKktV8t2Pu-6SpzUf1T1xjvwAjwbT1KXReLGaeYwvznMNM1boO-B0v4sAR2YaCmjLYVuI1vxrDkB0bN2AN4_f_KdbAfKxMvmVUq3tCbZBk6aXx-3ZMXoljjrYJHooKeH5BNZHNntdr9__Px-duXJATPGJeVYbC4RybgUMyHZ64wkR79WP1cfvZ7Ipf9KcgkBJx_2ZB_1esCAJOiwRG_MEsjnT9fE-miLz4nc-3wgd0WHXGYyoz3o4G2tQefQ5vS6eeH0lPDNXz1tbiq-_dJefDvfbT9ctJaDzK0YRtEblGLoBkE59D1oOWopGaMjc5xR4Eh7yYwb0cGGdsYAWEM5Y8yMwE-bd8feNS53BVNWt0uJdY2kmISB9aLjtKbYMWXrGimiU2v0s44PCqh6ekIdn1B1X_XnCSUqxI9QquGwx_iv-j_UI5w6jtQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Dutta, Ritam</creator><creator>Subash, T. D.</creator><creator>Paitya, Nitai</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3089-778X</orcidid></search><sort><creationdate>20210401</creationdate><title>DC performance analysis of III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon FET circuits with quantum mechanical effects</title><author>Dutta, Ritam ; Subash, T. D. ; Paitya, Nitai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-58d57be958685031771a9da99220d2f32013e0792bfdef1406bb11cb03222bd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Circuit design</topic><topic>Electric fields</topic><topic>Electrical Engineering</topic><topic>Electrons</topic><topic>Energy dissipation</topic><topic>Engineering</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>Graphical representations</topic><topic>Heterostructures</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Nanoribbons</topic><topic>Optical and Electronic Materials</topic><topic>Process parameters</topic><topic>Quantum mechanics</topic><topic>Semiconductor devices</topic><topic>Simulation</topic><topic>Theoretical</topic><topic>Threshold voltage</topic><topic>Transistors</topic><topic>Tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Ritam</creatorcontrib><creatorcontrib>Subash, T. D.</creatorcontrib><creatorcontrib>Paitya, Nitai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Ritam</au><au>Subash, T. D.</au><au>Paitya, Nitai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DC performance analysis of III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon FET circuits with quantum mechanical effects</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>20</volume><issue>2</issue><spage>855</spage><epage>863</epage><pages>855-863</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>In this article, the electrical behavior of laterally grown novel short-channel III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon field effect transistor (DG-TM-PiN-TGNFET) has been studied based on their quantum mechanical effect (QME). Firstly, by varying the device process parameters of the novel TFET structure, the DC parameter responses viz. threshold voltage, electric field and surface potential are investigated. Further these responses are analyzed by considering the QME for better device performance. Two-dimensional numerical device simulator (SILVACO TCAD) tool is used for simulating the quantum and semi-classical models. The simulation work has been validated by extensive analytical modeling, that reflected in our accurate graphical representations. Finally, to investigate the QME effect in circuit level applications, an TFET inverter circuit has been designed and its DC performance viz. power dissipation and propagation delay analysis is performed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10825-020-01649-5</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3089-778X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-8025 |
ispartof | Journal of computational electronics, 2021-04, Vol.20 (2), p.855-863 |
issn | 1569-8025 1572-8137 |
language | eng |
recordid | cdi_proquest_journals_2918275630 |
source | Springer Link |
subjects | Circuit design Electric fields Electrical Engineering Electrons Energy dissipation Engineering Field effect transistors Graphene Graphical representations Heterostructures Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical models Mechanical Engineering Nanoribbons Optical and Electronic Materials Process parameters Quantum mechanics Semiconductor devices Simulation Theoretical Threshold voltage Transistors Tunnels |
title | DC performance analysis of III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon FET circuits with quantum mechanical effects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DC%20performance%20analysis%20of%20III%E2%80%93V/Si%20heterostructure%20double%20gate%20triple%20material%20PiN%20tunneling%20graphene%20nanoribbon%20FET%20circuits%20with%20quantum%20mechanical%20effects&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Dutta,%20Ritam&rft.date=2021-04-01&rft.volume=20&rft.issue=2&rft.spage=855&rft.epage=863&rft.pages=855-863&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-020-01649-5&rft_dat=%3Cproquest_cross%3E2918275630%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-58d57be958685031771a9da99220d2f32013e0792bfdef1406bb11cb03222bd13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918275630&rft_id=info:pmid/&rfr_iscdi=true |