Loading…

Electrothermal analyses in Cu/ZrO2/Pt CBRAM memory using a dual-phase-lag model

We have investigated the electrothermal behavior in Cu/ZrO 2 /Pt conductive bridge random access memory (CBRAM) memory based on the dual-phase-lag thermal model. We have studied the effects of the geometry of the conductive filament (CF) and of the applied voltage on the distribution of both the int...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational electronics 2022-08, Vol.21 (4), p.792-801
Main Authors: Jemii, Elassaad, Belkhiria, Maissa, Aouaini, Fatma, Echouchene, Fraj, Alyousef, Haifa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c249t-941effacbad9ab6a6a7bb9859b1abf0aa20009ae9786d5e92c801b9e94bfb7d83
cites cdi_FETCH-LOGICAL-c249t-941effacbad9ab6a6a7bb9859b1abf0aa20009ae9786d5e92c801b9e94bfb7d83
container_end_page 801
container_issue 4
container_start_page 792
container_title Journal of computational electronics
container_volume 21
creator Jemii, Elassaad
Belkhiria, Maissa
Aouaini, Fatma
Echouchene, Fraj
Alyousef, Haifa
description We have investigated the electrothermal behavior in Cu/ZrO 2 /Pt conductive bridge random access memory (CBRAM) memory based on the dual-phase-lag thermal model. We have studied the effects of the geometry of the conductive filament (CF) and of the applied voltage on the distribution of both the internal temperature and of the electric field at different delay times. The simulated results are compared with recently published works using classical Fourier’s law. This dual-phase-lag (DPL) model reveals that along the CF during the reset process, the temperatures are lower than those found using Fourier's law in the transient state and increase the reached time of the steady state. Further, the displacement of the hot spot over time is almost negligible relatively to Fourier's law. This study shows that the DPL model may be more useful in assessing the thermoelectric behavior and nanoscale mathematical design of CBRAM memory. Finally, in the computational stage, the finite element method was applied to solve the nonlinear equations.
doi_str_mv 10.1007/s10825-022-01907-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918276304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918276304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-941effacbad9ab6a6a7bb9859b1abf0aa20009ae9786d5e92c801b9e94bfb7d83</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwB5gsMZteOw_bY4lKQSoqQrCwWNeJ04fyKHYy9N-TEiQ2pnuGcz5dfYTccrjnAHIWOCiRMBCCAdcgmTojE55IwRSP5Pkpp5opEMkluQphDyBAxHxC1ovK5Z1vu63zNVYUG6yOwQW6a2jWzz79WsxeO5o9vM1faO3q1h9pH3bNhiIteqzYYYvBsQo3tG4LV12TixKr4G5-75R8PC7esye2Wi-fs_mK5SLWHdMxd2WJucVCo00xRWmtVom2HG0JiAIANDotVVokTotcAbfa6diWVhYqmpK7kXvw7VfvQmf2be-H54MRmish0wjioSXGVu7bELwrzcHvavRHw8GcxJlRnBnEmR9x5oSOxlEYys3G-T_0P6tv1dVwVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918276304</pqid></control><display><type>article</type><title>Electrothermal analyses in Cu/ZrO2/Pt CBRAM memory using a dual-phase-lag model</title><source>Springer Nature</source><creator>Jemii, Elassaad ; Belkhiria, Maissa ; Aouaini, Fatma ; Echouchene, Fraj ; Alyousef, Haifa</creator><creatorcontrib>Jemii, Elassaad ; Belkhiria, Maissa ; Aouaini, Fatma ; Echouchene, Fraj ; Alyousef, Haifa</creatorcontrib><description>We have investigated the electrothermal behavior in Cu/ZrO 2 /Pt conductive bridge random access memory (CBRAM) memory based on the dual-phase-lag thermal model. We have studied the effects of the geometry of the conductive filament (CF) and of the applied voltage on the distribution of both the internal temperature and of the electric field at different delay times. The simulated results are compared with recently published works using classical Fourier’s law. This dual-phase-lag (DPL) model reveals that along the CF during the reset process, the temperatures are lower than those found using Fourier's law in the transient state and increase the reached time of the steady state. Further, the displacement of the hot spot over time is almost negligible relatively to Fourier's law. This study shows that the DPL model may be more useful in assessing the thermoelectric behavior and nanoscale mathematical design of CBRAM memory. Finally, in the computational stage, the finite element method was applied to solve the nonlinear equations.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-022-01907-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Delay time ; Electric fields ; Electrical Engineering ; Electrodes ; Electrolytes ; Engineering ; Finite element method ; Fourier law ; Geometry ; Heat ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mechanical Engineering ; Nonlinear equations ; Optical and Electronic Materials ; Phase lag ; Random access memory ; Response time ; Temperature ; Theoretical ; Thermal analysis ; Zirconium dioxide</subject><ispartof>Journal of computational electronics, 2022-08, Vol.21 (4), p.792-801</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-941effacbad9ab6a6a7bb9859b1abf0aa20009ae9786d5e92c801b9e94bfb7d83</citedby><cites>FETCH-LOGICAL-c249t-941effacbad9ab6a6a7bb9859b1abf0aa20009ae9786d5e92c801b9e94bfb7d83</cites><orcidid>0000-0001-8456-648X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Jemii, Elassaad</creatorcontrib><creatorcontrib>Belkhiria, Maissa</creatorcontrib><creatorcontrib>Aouaini, Fatma</creatorcontrib><creatorcontrib>Echouchene, Fraj</creatorcontrib><creatorcontrib>Alyousef, Haifa</creatorcontrib><title>Electrothermal analyses in Cu/ZrO2/Pt CBRAM memory using a dual-phase-lag model</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>We have investigated the electrothermal behavior in Cu/ZrO 2 /Pt conductive bridge random access memory (CBRAM) memory based on the dual-phase-lag thermal model. We have studied the effects of the geometry of the conductive filament (CF) and of the applied voltage on the distribution of both the internal temperature and of the electric field at different delay times. The simulated results are compared with recently published works using classical Fourier’s law. This dual-phase-lag (DPL) model reveals that along the CF during the reset process, the temperatures are lower than those found using Fourier's law in the transient state and increase the reached time of the steady state. Further, the displacement of the hot spot over time is almost negligible relatively to Fourier's law. This study shows that the DPL model may be more useful in assessing the thermoelectric behavior and nanoscale mathematical design of CBRAM memory. Finally, in the computational stage, the finite element method was applied to solve the nonlinear equations.</description><subject>Delay time</subject><subject>Electric fields</subject><subject>Electrical Engineering</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Fourier law</subject><subject>Geometry</subject><subject>Heat</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical Engineering</subject><subject>Nonlinear equations</subject><subject>Optical and Electronic Materials</subject><subject>Phase lag</subject><subject>Random access memory</subject><subject>Response time</subject><subject>Temperature</subject><subject>Theoretical</subject><subject>Thermal analysis</subject><subject>Zirconium dioxide</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwB5gsMZteOw_bY4lKQSoqQrCwWNeJ04fyKHYy9N-TEiQ2pnuGcz5dfYTccrjnAHIWOCiRMBCCAdcgmTojE55IwRSP5Pkpp5opEMkluQphDyBAxHxC1ovK5Z1vu63zNVYUG6yOwQW6a2jWzz79WsxeO5o9vM1faO3q1h9pH3bNhiIteqzYYYvBsQo3tG4LV12TixKr4G5-75R8PC7esye2Wi-fs_mK5SLWHdMxd2WJucVCo00xRWmtVom2HG0JiAIANDotVVokTotcAbfa6diWVhYqmpK7kXvw7VfvQmf2be-H54MRmish0wjioSXGVu7bELwrzcHvavRHw8GcxJlRnBnEmR9x5oSOxlEYys3G-T_0P6tv1dVwVg</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Jemii, Elassaad</creator><creator>Belkhiria, Maissa</creator><creator>Aouaini, Fatma</creator><creator>Echouchene, Fraj</creator><creator>Alyousef, Haifa</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8456-648X</orcidid></search><sort><creationdate>20220801</creationdate><title>Electrothermal analyses in Cu/ZrO2/Pt CBRAM memory using a dual-phase-lag model</title><author>Jemii, Elassaad ; Belkhiria, Maissa ; Aouaini, Fatma ; Echouchene, Fraj ; Alyousef, Haifa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-941effacbad9ab6a6a7bb9859b1abf0aa20009ae9786d5e92c801b9e94bfb7d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Delay time</topic><topic>Electric fields</topic><topic>Electrical Engineering</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Fourier law</topic><topic>Geometry</topic><topic>Heat</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical Engineering</topic><topic>Nonlinear equations</topic><topic>Optical and Electronic Materials</topic><topic>Phase lag</topic><topic>Random access memory</topic><topic>Response time</topic><topic>Temperature</topic><topic>Theoretical</topic><topic>Thermal analysis</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jemii, Elassaad</creatorcontrib><creatorcontrib>Belkhiria, Maissa</creatorcontrib><creatorcontrib>Aouaini, Fatma</creatorcontrib><creatorcontrib>Echouchene, Fraj</creatorcontrib><creatorcontrib>Alyousef, Haifa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jemii, Elassaad</au><au>Belkhiria, Maissa</au><au>Aouaini, Fatma</au><au>Echouchene, Fraj</au><au>Alyousef, Haifa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrothermal analyses in Cu/ZrO2/Pt CBRAM memory using a dual-phase-lag model</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>21</volume><issue>4</issue><spage>792</spage><epage>801</epage><pages>792-801</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>We have investigated the electrothermal behavior in Cu/ZrO 2 /Pt conductive bridge random access memory (CBRAM) memory based on the dual-phase-lag thermal model. We have studied the effects of the geometry of the conductive filament (CF) and of the applied voltage on the distribution of both the internal temperature and of the electric field at different delay times. The simulated results are compared with recently published works using classical Fourier’s law. This dual-phase-lag (DPL) model reveals that along the CF during the reset process, the temperatures are lower than those found using Fourier's law in the transient state and increase the reached time of the steady state. Further, the displacement of the hot spot over time is almost negligible relatively to Fourier's law. This study shows that the DPL model may be more useful in assessing the thermoelectric behavior and nanoscale mathematical design of CBRAM memory. Finally, in the computational stage, the finite element method was applied to solve the nonlinear equations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10825-022-01907-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8456-648X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1569-8025
ispartof Journal of computational electronics, 2022-08, Vol.21 (4), p.792-801
issn 1569-8025
1572-8137
language eng
recordid cdi_proquest_journals_2918276304
source Springer Nature
subjects Delay time
Electric fields
Electrical Engineering
Electrodes
Electrolytes
Engineering
Finite element method
Fourier law
Geometry
Heat
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mechanical Engineering
Nonlinear equations
Optical and Electronic Materials
Phase lag
Random access memory
Response time
Temperature
Theoretical
Thermal analysis
Zirconium dioxide
title Electrothermal analyses in Cu/ZrO2/Pt CBRAM memory using a dual-phase-lag model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrothermal%20analyses%20in%20Cu/ZrO2/Pt%20CBRAM%20memory%20using%20a%20dual-phase-lag%20model&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Jemii,%20Elassaad&rft.date=2022-08-01&rft.volume=21&rft.issue=4&rft.spage=792&rft.epage=801&rft.pages=792-801&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-022-01907-8&rft_dat=%3Cproquest_cross%3E2918276304%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-941effacbad9ab6a6a7bb9859b1abf0aa20009ae9786d5e92c801b9e94bfb7d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918276304&rft_id=info:pmid/&rfr_iscdi=true