Loading…
Electrothermal analyses in Cu/ZrO2/Pt CBRAM memory using a dual-phase-lag model
We have investigated the electrothermal behavior in Cu/ZrO 2 /Pt conductive bridge random access memory (CBRAM) memory based on the dual-phase-lag thermal model. We have studied the effects of the geometry of the conductive filament (CF) and of the applied voltage on the distribution of both the int...
Saved in:
Published in: | Journal of computational electronics 2022-08, Vol.21 (4), p.792-801 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c249t-941effacbad9ab6a6a7bb9859b1abf0aa20009ae9786d5e92c801b9e94bfb7d83 |
---|---|
cites | cdi_FETCH-LOGICAL-c249t-941effacbad9ab6a6a7bb9859b1abf0aa20009ae9786d5e92c801b9e94bfb7d83 |
container_end_page | 801 |
container_issue | 4 |
container_start_page | 792 |
container_title | Journal of computational electronics |
container_volume | 21 |
creator | Jemii, Elassaad Belkhiria, Maissa Aouaini, Fatma Echouchene, Fraj Alyousef, Haifa |
description | We have investigated the electrothermal behavior in Cu/ZrO
2
/Pt conductive bridge random access memory (CBRAM) memory based on the dual-phase-lag thermal model. We have studied the effects of the geometry of the conductive filament (CF) and of the applied voltage on the distribution of both the internal temperature and of the electric field at different delay times. The simulated results are compared with recently published works using classical Fourier’s law. This dual-phase-lag (DPL) model reveals that along the CF during the reset process, the temperatures are lower than those found using Fourier's law in the transient state and increase the reached time of the steady state. Further, the displacement of the hot spot over time is almost negligible relatively to Fourier's law. This study shows that the DPL model may be more useful in assessing the thermoelectric behavior and nanoscale mathematical design of CBRAM memory. Finally, in the computational stage, the finite element method was applied to solve the nonlinear equations. |
doi_str_mv | 10.1007/s10825-022-01907-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918276304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918276304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-941effacbad9ab6a6a7bb9859b1abf0aa20009ae9786d5e92c801b9e94bfb7d83</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwB5gsMZteOw_bY4lKQSoqQrCwWNeJ04fyKHYy9N-TEiQ2pnuGcz5dfYTccrjnAHIWOCiRMBCCAdcgmTojE55IwRSP5Pkpp5opEMkluQphDyBAxHxC1ovK5Z1vu63zNVYUG6yOwQW6a2jWzz79WsxeO5o9vM1faO3q1h9pH3bNhiIteqzYYYvBsQo3tG4LV12TixKr4G5-75R8PC7esye2Wi-fs_mK5SLWHdMxd2WJucVCo00xRWmtVom2HG0JiAIANDotVVokTotcAbfa6diWVhYqmpK7kXvw7VfvQmf2be-H54MRmish0wjioSXGVu7bELwrzcHvavRHw8GcxJlRnBnEmR9x5oSOxlEYys3G-T_0P6tv1dVwVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918276304</pqid></control><display><type>article</type><title>Electrothermal analyses in Cu/ZrO2/Pt CBRAM memory using a dual-phase-lag model</title><source>Springer Nature</source><creator>Jemii, Elassaad ; Belkhiria, Maissa ; Aouaini, Fatma ; Echouchene, Fraj ; Alyousef, Haifa</creator><creatorcontrib>Jemii, Elassaad ; Belkhiria, Maissa ; Aouaini, Fatma ; Echouchene, Fraj ; Alyousef, Haifa</creatorcontrib><description>We have investigated the electrothermal behavior in Cu/ZrO
2
/Pt conductive bridge random access memory (CBRAM) memory based on the dual-phase-lag thermal model. We have studied the effects of the geometry of the conductive filament (CF) and of the applied voltage on the distribution of both the internal temperature and of the electric field at different delay times. The simulated results are compared with recently published works using classical Fourier’s law. This dual-phase-lag (DPL) model reveals that along the CF during the reset process, the temperatures are lower than those found using Fourier's law in the transient state and increase the reached time of the steady state. Further, the displacement of the hot spot over time is almost negligible relatively to Fourier's law. This study shows that the DPL model may be more useful in assessing the thermoelectric behavior and nanoscale mathematical design of CBRAM memory. Finally, in the computational stage, the finite element method was applied to solve the nonlinear equations.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-022-01907-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Delay time ; Electric fields ; Electrical Engineering ; Electrodes ; Electrolytes ; Engineering ; Finite element method ; Fourier law ; Geometry ; Heat ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mechanical Engineering ; Nonlinear equations ; Optical and Electronic Materials ; Phase lag ; Random access memory ; Response time ; Temperature ; Theoretical ; Thermal analysis ; Zirconium dioxide</subject><ispartof>Journal of computational electronics, 2022-08, Vol.21 (4), p.792-801</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-941effacbad9ab6a6a7bb9859b1abf0aa20009ae9786d5e92c801b9e94bfb7d83</citedby><cites>FETCH-LOGICAL-c249t-941effacbad9ab6a6a7bb9859b1abf0aa20009ae9786d5e92c801b9e94bfb7d83</cites><orcidid>0000-0001-8456-648X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Jemii, Elassaad</creatorcontrib><creatorcontrib>Belkhiria, Maissa</creatorcontrib><creatorcontrib>Aouaini, Fatma</creatorcontrib><creatorcontrib>Echouchene, Fraj</creatorcontrib><creatorcontrib>Alyousef, Haifa</creatorcontrib><title>Electrothermal analyses in Cu/ZrO2/Pt CBRAM memory using a dual-phase-lag model</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>We have investigated the electrothermal behavior in Cu/ZrO
2
/Pt conductive bridge random access memory (CBRAM) memory based on the dual-phase-lag thermal model. We have studied the effects of the geometry of the conductive filament (CF) and of the applied voltage on the distribution of both the internal temperature and of the electric field at different delay times. The simulated results are compared with recently published works using classical Fourier’s law. This dual-phase-lag (DPL) model reveals that along the CF during the reset process, the temperatures are lower than those found using Fourier's law in the transient state and increase the reached time of the steady state. Further, the displacement of the hot spot over time is almost negligible relatively to Fourier's law. This study shows that the DPL model may be more useful in assessing the thermoelectric behavior and nanoscale mathematical design of CBRAM memory. Finally, in the computational stage, the finite element method was applied to solve the nonlinear equations.</description><subject>Delay time</subject><subject>Electric fields</subject><subject>Electrical Engineering</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Fourier law</subject><subject>Geometry</subject><subject>Heat</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical Engineering</subject><subject>Nonlinear equations</subject><subject>Optical and Electronic Materials</subject><subject>Phase lag</subject><subject>Random access memory</subject><subject>Response time</subject><subject>Temperature</subject><subject>Theoretical</subject><subject>Thermal analysis</subject><subject>Zirconium dioxide</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwB5gsMZteOw_bY4lKQSoqQrCwWNeJ04fyKHYy9N-TEiQ2pnuGcz5dfYTccrjnAHIWOCiRMBCCAdcgmTojE55IwRSP5Pkpp5opEMkluQphDyBAxHxC1ovK5Z1vu63zNVYUG6yOwQW6a2jWzz79WsxeO5o9vM1faO3q1h9pH3bNhiIteqzYYYvBsQo3tG4LV12TixKr4G5-75R8PC7esye2Wi-fs_mK5SLWHdMxd2WJucVCo00xRWmtVom2HG0JiAIANDotVVokTotcAbfa6diWVhYqmpK7kXvw7VfvQmf2be-H54MRmish0wjioSXGVu7bELwrzcHvavRHw8GcxJlRnBnEmR9x5oSOxlEYys3G-T_0P6tv1dVwVg</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Jemii, Elassaad</creator><creator>Belkhiria, Maissa</creator><creator>Aouaini, Fatma</creator><creator>Echouchene, Fraj</creator><creator>Alyousef, Haifa</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8456-648X</orcidid></search><sort><creationdate>20220801</creationdate><title>Electrothermal analyses in Cu/ZrO2/Pt CBRAM memory using a dual-phase-lag model</title><author>Jemii, Elassaad ; Belkhiria, Maissa ; Aouaini, Fatma ; Echouchene, Fraj ; Alyousef, Haifa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-941effacbad9ab6a6a7bb9859b1abf0aa20009ae9786d5e92c801b9e94bfb7d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Delay time</topic><topic>Electric fields</topic><topic>Electrical Engineering</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Fourier law</topic><topic>Geometry</topic><topic>Heat</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical Engineering</topic><topic>Nonlinear equations</topic><topic>Optical and Electronic Materials</topic><topic>Phase lag</topic><topic>Random access memory</topic><topic>Response time</topic><topic>Temperature</topic><topic>Theoretical</topic><topic>Thermal analysis</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jemii, Elassaad</creatorcontrib><creatorcontrib>Belkhiria, Maissa</creatorcontrib><creatorcontrib>Aouaini, Fatma</creatorcontrib><creatorcontrib>Echouchene, Fraj</creatorcontrib><creatorcontrib>Alyousef, Haifa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jemii, Elassaad</au><au>Belkhiria, Maissa</au><au>Aouaini, Fatma</au><au>Echouchene, Fraj</au><au>Alyousef, Haifa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrothermal analyses in Cu/ZrO2/Pt CBRAM memory using a dual-phase-lag model</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>21</volume><issue>4</issue><spage>792</spage><epage>801</epage><pages>792-801</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>We have investigated the electrothermal behavior in Cu/ZrO
2
/Pt conductive bridge random access memory (CBRAM) memory based on the dual-phase-lag thermal model. We have studied the effects of the geometry of the conductive filament (CF) and of the applied voltage on the distribution of both the internal temperature and of the electric field at different delay times. The simulated results are compared with recently published works using classical Fourier’s law. This dual-phase-lag (DPL) model reveals that along the CF during the reset process, the temperatures are lower than those found using Fourier's law in the transient state and increase the reached time of the steady state. Further, the displacement of the hot spot over time is almost negligible relatively to Fourier's law. This study shows that the DPL model may be more useful in assessing the thermoelectric behavior and nanoscale mathematical design of CBRAM memory. Finally, in the computational stage, the finite element method was applied to solve the nonlinear equations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10825-022-01907-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8456-648X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-8025 |
ispartof | Journal of computational electronics, 2022-08, Vol.21 (4), p.792-801 |
issn | 1569-8025 1572-8137 |
language | eng |
recordid | cdi_proquest_journals_2918276304 |
source | Springer Nature |
subjects | Delay time Electric fields Electrical Engineering Electrodes Electrolytes Engineering Finite element method Fourier law Geometry Heat Mathematical and Computational Engineering Mathematical and Computational Physics Mechanical Engineering Nonlinear equations Optical and Electronic Materials Phase lag Random access memory Response time Temperature Theoretical Thermal analysis Zirconium dioxide |
title | Electrothermal analyses in Cu/ZrO2/Pt CBRAM memory using a dual-phase-lag model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrothermal%20analyses%20in%20Cu/ZrO2/Pt%20CBRAM%20memory%20using%20a%20dual-phase-lag%20model&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Jemii,%20Elassaad&rft.date=2022-08-01&rft.volume=21&rft.issue=4&rft.spage=792&rft.epage=801&rft.pages=792-801&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-022-01907-8&rft_dat=%3Cproquest_cross%3E2918276304%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-941effacbad9ab6a6a7bb9859b1abf0aa20009ae9786d5e92c801b9e94bfb7d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918276304&rft_id=info:pmid/&rfr_iscdi=true |