Loading…
Tailoring of Structural, Morphological and Optical Properties of Boron Nitride/Nickel Oxide (BN100-x/NiOx) Nanocomposites
Boron nitride (BN) has encouraged researchers to use it in composite materials due to its different properties. BN-based nanocomposites have been synthesized using a modified chemical method. X-ray diffraction (XRD) results confirmed the formation of hexagonal-BN and nickel oxide (NiO) phases in sam...
Saved in:
Published in: | Journal of cluster science 2021-07, Vol.32 (4), p.865-873 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Boron nitride (BN) has encouraged researchers to use it in composite materials due to its different properties. BN-based nanocomposites have been synthesized using a modified chemical method. X-ray diffraction (XRD) results confirmed the formation of hexagonal-BN and nickel oxide (NiO) phases in samples. XRD analysis shows that samples are textured along (100) plane which distorts structure and leads to formation of defect states. The electron density difference between BN and NiO as well as textural growth are two main reasons for variation in diffraction peak intensities. Raman spectroscopic results also revealed that peak intensity and position shifts with increase in NiO content, due to the distortions induced by NiO incorporation confirming the presence of defect states. Field emission scanning electron microscopy (FESEM) results showed that morphology of synthesized nanocomposites varies with increase of NiO concentration. Ultra-violet (UV)-visible results revealed that the absorption edge is red-shifted with NiO content, consequently, the band-gap energy of composites get decreased. Distorted crystal structure and defect states are responsible for variation in structural, morphological as well as optical properties. Results suggested that the nanocomposites can be explored for photodetection as well as gas sensing applications.
Graphical Abstract |
---|---|
ISSN: | 1040-7278 1572-8862 |
DOI: | 10.1007/s10876-020-01853-0 |