Loading…
Preparing Cuprous Iodide Nanocolloid by the Electrical Spark Discharge Method
In this study, the electric spark discharge method was used to prepare a cuprous iodide nanocolloid (CuINC); specifically, an electrical discharge machine was used to prepare a CuINC under five sets of pulse width modulation (Ton–Toff) parameters, and ultraviolet–visible spectrophotometry and a zeta...
Saved in:
Published in: | Journal of cluster science 2022-09, Vol.33 (5), p.2069-2075 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, the electric spark discharge method was used to prepare a cuprous iodide nanocolloid (CuINC); specifically, an electrical discharge machine was used to prepare a CuINC under five sets of pulse width modulation (Ton–Toff) parameters, and ultraviolet–visible spectrophotometry and a zetasizer were used to evaluate the most suitable parameter set. Copper wires were used as electrodes (copper content = 99.7%, diameter = 1 mm), and deionized water mixed with iodine was used as the dielectric fluid. The analysis results indicated that the CuINC prepared under Ton–Toff = 10–10 µs had absorbance of 1.8 and a zeta potential of − 31.9 mV. The resultant CuINC had the highest concentration and suspension stability; this indicated that Ton–Toff = 10–10 µs is the most suitable parameter combination for preparing a CuINC. X-ray diffraction revealed a complete CuI crystal structure. Transmission electron microscopy images showed that most of the CuI nanoparticles were smaller than 5 nm and that the nanoparticles were evenly dispersed. The electric-discharge-based production process employed in this study is rapid and simple, and the end products have favorable suspension power. The method is a safe, environmentally friendly, and rapid method of preparing CuINCs. |
---|---|
ISSN: | 1040-7278 1572-8862 |
DOI: | 10.1007/s10876-021-02127-z |