Loading…

The Highest Superconvergence Analysis of ADG Method for Two Point Boundary Values Problem

In this paper, an averaging discontinuous Galerkin (ADG) method for two point boundary value problems is analyzed. We prove, for any even polynomial degree k , the numerical flux convergence at a rate of 2 k + 2 for all mesh nodes (in particular, the numerical flux for k = 0 has the second order sup...

Full description

Saved in:
Bibliographic Details
Published in:Journal of scientific computing 2017, Vol.70 (1), p.175-191
Main Authors: Wang, Jiangxing, Chen, Chuanmiao, Xie, Ziqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-a30f413abc865a80c6b4757494c6c4578af01ef807a99d851e70825c0cdab3f73
cites cdi_FETCH-LOGICAL-c316t-a30f413abc865a80c6b4757494c6c4578af01ef807a99d851e70825c0cdab3f73
container_end_page 191
container_issue 1
container_start_page 175
container_title Journal of scientific computing
container_volume 70
creator Wang, Jiangxing
Chen, Chuanmiao
Xie, Ziqing
description In this paper, an averaging discontinuous Galerkin (ADG) method for two point boundary value problems is analyzed. We prove, for any even polynomial degree k , the numerical flux convergence at a rate of 2 k + 2 for all mesh nodes (in particular, the numerical flux for k = 0 has the second order superconvergence rate). Numerical experiments are shown to demonstrate the theoretical results.
doi_str_mv 10.1007/s10915-016-0247-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918312257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918312257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a30f413abc865a80c6b4757494c6c4578af01ef807a99d851e70825c0cdab3f73</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKc_wFvAc_VLmzTJcU7dBMWBU_AU0jTZOrpmJq2yf29HBU-evsv7vN_Lg9AlgWsCwG8iAUlYAiRPIKU8gSM0IoxnCc8lOUYjEIIlnHJ6is5i3ACAFDIdoY_l2uJ5tVrb2OLXbmeD8c2XDSvbGIsnja73sYrYOzy5m-Fn2659iZ0PePnt8cJXTYtvfdeUOuzxu647G_Ei-KK223N04nQd7cXvHaO3h_vldJ48vcwep5OnxGQkbxOdgaMk04UROdMCTF5QzjiV1OSGMi60A2KdAK6lLAUjloNImQFT6iJzPBujq6F3F_xn_79VG9-FfnhUqSQiI2nKDikypEzwMQbr1C5U2361IqAOBtVgUPUG1cGggp5JByb22WZlw1_z_9APkdpylw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918312257</pqid></control><display><type>article</type><title>The Highest Superconvergence Analysis of ADG Method for Two Point Boundary Values Problem</title><source>Springer Link</source><creator>Wang, Jiangxing ; Chen, Chuanmiao ; Xie, Ziqing</creator><creatorcontrib>Wang, Jiangxing ; Chen, Chuanmiao ; Xie, Ziqing</creatorcontrib><description>In this paper, an averaging discontinuous Galerkin (ADG) method for two point boundary value problems is analyzed. We prove, for any even polynomial degree k , the numerical flux convergence at a rate of 2 k + 2 for all mesh nodes (in particular, the numerical flux for k = 0 has the second order superconvergence rate). Numerical experiments are shown to demonstrate the theoretical results.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-016-0247-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Boundary value problems ; Computational Mathematics and Numerical Analysis ; Equality ; Estimates ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Methods ; Polynomials ; Theoretical</subject><ispartof>Journal of scientific computing, 2017, Vol.70 (1), p.175-191</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Springer Science+Business Media New York 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a30f413abc865a80c6b4757494c6c4578af01ef807a99d851e70825c0cdab3f73</citedby><cites>FETCH-LOGICAL-c316t-a30f413abc865a80c6b4757494c6c4578af01ef807a99d851e70825c0cdab3f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Wang, Jiangxing</creatorcontrib><creatorcontrib>Chen, Chuanmiao</creatorcontrib><creatorcontrib>Xie, Ziqing</creatorcontrib><title>The Highest Superconvergence Analysis of ADG Method for Two Point Boundary Values Problem</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>In this paper, an averaging discontinuous Galerkin (ADG) method for two point boundary value problems is analyzed. We prove, for any even polynomial degree k , the numerical flux convergence at a rate of 2 k + 2 for all mesh nodes (in particular, the numerical flux for k = 0 has the second order superconvergence rate). Numerical experiments are shown to demonstrate the theoretical results.</description><subject>Algorithms</subject><subject>Boundary value problems</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Equality</subject><subject>Estimates</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Polynomials</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoOKc_wFvAc_VLmzTJcU7dBMWBU_AU0jTZOrpmJq2yf29HBU-evsv7vN_Lg9AlgWsCwG8iAUlYAiRPIKU8gSM0IoxnCc8lOUYjEIIlnHJ6is5i3ACAFDIdoY_l2uJ5tVrb2OLXbmeD8c2XDSvbGIsnja73sYrYOzy5m-Fn2659iZ0PePnt8cJXTYtvfdeUOuzxu647G_Ei-KK223N04nQd7cXvHaO3h_vldJ48vcwep5OnxGQkbxOdgaMk04UROdMCTF5QzjiV1OSGMi60A2KdAK6lLAUjloNImQFT6iJzPBujq6F3F_xn_79VG9-FfnhUqSQiI2nKDikypEzwMQbr1C5U2361IqAOBtVgUPUG1cGggp5JByb22WZlw1_z_9APkdpylw</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Wang, Jiangxing</creator><creator>Chen, Chuanmiao</creator><creator>Xie, Ziqing</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>2017</creationdate><title>The Highest Superconvergence Analysis of ADG Method for Two Point Boundary Values Problem</title><author>Wang, Jiangxing ; Chen, Chuanmiao ; Xie, Ziqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a30f413abc865a80c6b4757494c6c4578af01ef807a99d851e70825c0cdab3f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Boundary value problems</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Equality</topic><topic>Estimates</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Polynomials</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiangxing</creatorcontrib><creatorcontrib>Chen, Chuanmiao</creatorcontrib><creatorcontrib>Xie, Ziqing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jiangxing</au><au>Chen, Chuanmiao</au><au>Xie, Ziqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Highest Superconvergence Analysis of ADG Method for Two Point Boundary Values Problem</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2017</date><risdate>2017</risdate><volume>70</volume><issue>1</issue><spage>175</spage><epage>191</epage><pages>175-191</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>In this paper, an averaging discontinuous Galerkin (ADG) method for two point boundary value problems is analyzed. We prove, for any even polynomial degree k , the numerical flux convergence at a rate of 2 k + 2 for all mesh nodes (in particular, the numerical flux for k = 0 has the second order superconvergence rate). Numerical experiments are shown to demonstrate the theoretical results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-016-0247-0</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2017, Vol.70 (1), p.175-191
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_2918312257
source Springer Link
subjects Algorithms
Boundary value problems
Computational Mathematics and Numerical Analysis
Equality
Estimates
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Methods
Polynomials
Theoretical
title The Highest Superconvergence Analysis of ADG Method for Two Point Boundary Values Problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T19%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Highest%20Superconvergence%20Analysis%20of%20ADG%20Method%20for%20Two%20Point%20Boundary%20Values%20Problem&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Wang,%20Jiangxing&rft.date=2017&rft.volume=70&rft.issue=1&rft.spage=175&rft.epage=191&rft.pages=175-191&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-016-0247-0&rft_dat=%3Cproquest_cross%3E2918312257%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-a30f413abc865a80c6b4757494c6c4578af01ef807a99d851e70825c0cdab3f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918312257&rft_id=info:pmid/&rfr_iscdi=true