Loading…

An Adaptive Algorithm for the Time Dependent Transport Equation with Anisotropic Finite Elements and the Crank–Nicolson Scheme

Anisotropic finite elements and the Crank–Nicolson scheme are considered to solve the time dependent transport equation. Anisotropic a priori and a posteriori error estimates are derived. The sharpness of the error indicator is studied on non-adapted meshes and time steps. An adaptive algorithm in s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of scientific computing 2018-04, Vol.75 (1), p.350-375
Main Authors: Dubuis, Samuel, Picasso, Marco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-8b9a4c66131c97e64a9aed1ce67d5d77cae99eba9e40eddb4b4c3c5652ede0223
cites cdi_FETCH-LOGICAL-c359t-8b9a4c66131c97e64a9aed1ce67d5d77cae99eba9e40eddb4b4c3c5652ede0223
container_end_page 375
container_issue 1
container_start_page 350
container_title Journal of scientific computing
container_volume 75
creator Dubuis, Samuel
Picasso, Marco
description Anisotropic finite elements and the Crank–Nicolson scheme are considered to solve the time dependent transport equation. Anisotropic a priori and a posteriori error estimates are derived. The sharpness of the error indicator is studied on non-adapted meshes and time steps. An adaptive algorithm in space and time is then designed to control the error at final time. Numerical results show the accuracy of the method.
doi_str_mv 10.1007/s10915-017-0537-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918313275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918313275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8b9a4c66131c97e64a9aed1ce67d5d77cae99eba9e40eddb4b4c3c5652ede0223</originalsourceid><addsrcrecordid>eNp1kM1OAyEURonRxFp9AHckrkdhZhiG5aTWn6TRhXVNKNxatIURqMZd38E39Emk1sSVq7s557vJQeiUknNKCL-IlAjKCkJ5QVjFC7qHBpTxquCNoPtoQNqWFbzm9SE6ivGZECJaUQ7QpnO4M6pP9g1wt3zywabFCs99wGkBeGpXgC-hB2fAJTwNysXeh4THr2uVrHf4PfO4czb6FHxvNb6yzibA4yWsshKxcuZnapTdl6_N553Vfhmz-aAXGTlGB3O1jHDye4fo8Wo8Hd0Uk_vr21E3KXTFRCramVC1bhpaUS04NLUSCgzV0HDDDOdagRAwUwJqAsbM6lmtK80aVoIBUpbVEJ3tdvvgX9cQk3z26-DyS1kK2la0KjnLFN1ROvgYA8xlH-xKhQ9JidyGlrvQMoeW29CSZqfcOTGz7gnC3_L_0jf66IPf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918313275</pqid></control><display><type>article</type><title>An Adaptive Algorithm for the Time Dependent Transport Equation with Anisotropic Finite Elements and the Crank–Nicolson Scheme</title><source>Springer Link</source><creator>Dubuis, Samuel ; Picasso, Marco</creator><creatorcontrib>Dubuis, Samuel ; Picasso, Marco</creatorcontrib><description>Anisotropic finite elements and the Crank–Nicolson scheme are considered to solve the time dependent transport equation. Anisotropic a priori and a posteriori error estimates are derived. The sharpness of the error indicator is studied on non-adapted meshes and time steps. An adaptive algorithm in space and time is then designed to control the error at final time. Numerical results show the accuracy of the method.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-017-0537-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive algorithms ; Algorithms ; Computational Mathematics and Numerical Analysis ; Crank-Nicholson method ; Error analysis ; Estimates ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Numerical analysis ; Partial differential equations ; Theoretical ; Time dependence ; Transport equations</subject><ispartof>Journal of scientific computing, 2018-04, Vol.75 (1), p.350-375</ispartof><rights>The Author(s) 2017</rights><rights>The Author(s) 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8b9a4c66131c97e64a9aed1ce67d5d77cae99eba9e40eddb4b4c3c5652ede0223</citedby><cites>FETCH-LOGICAL-c359t-8b9a4c66131c97e64a9aed1ce67d5d77cae99eba9e40eddb4b4c3c5652ede0223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Dubuis, Samuel</creatorcontrib><creatorcontrib>Picasso, Marco</creatorcontrib><title>An Adaptive Algorithm for the Time Dependent Transport Equation with Anisotropic Finite Elements and the Crank–Nicolson Scheme</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>Anisotropic finite elements and the Crank–Nicolson scheme are considered to solve the time dependent transport equation. Anisotropic a priori and a posteriori error estimates are derived. The sharpness of the error indicator is studied on non-adapted meshes and time steps. An adaptive algorithm in space and time is then designed to control the error at final time. Numerical results show the accuracy of the method.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Crank-Nicholson method</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical analysis</subject><subject>Partial differential equations</subject><subject>Theoretical</subject><subject>Time dependence</subject><subject>Transport equations</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OAyEURonRxFp9AHckrkdhZhiG5aTWn6TRhXVNKNxatIURqMZd38E39Emk1sSVq7s557vJQeiUknNKCL-IlAjKCkJ5QVjFC7qHBpTxquCNoPtoQNqWFbzm9SE6ivGZECJaUQ7QpnO4M6pP9g1wt3zywabFCs99wGkBeGpXgC-hB2fAJTwNysXeh4THr2uVrHf4PfO4czb6FHxvNb6yzibA4yWsshKxcuZnapTdl6_N553Vfhmz-aAXGTlGB3O1jHDye4fo8Wo8Hd0Uk_vr21E3KXTFRCramVC1bhpaUS04NLUSCgzV0HDDDOdagRAwUwJqAsbM6lmtK80aVoIBUpbVEJ3tdvvgX9cQk3z26-DyS1kK2la0KjnLFN1ROvgYA8xlH-xKhQ9JidyGlrvQMoeW29CSZqfcOTGz7gnC3_L_0jf66IPf</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Dubuis, Samuel</creator><creator>Picasso, Marco</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>201804</creationdate><title>An Adaptive Algorithm for the Time Dependent Transport Equation with Anisotropic Finite Elements and the Crank–Nicolson Scheme</title><author>Dubuis, Samuel ; Picasso, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8b9a4c66131c97e64a9aed1ce67d5d77cae99eba9e40eddb4b4c3c5652ede0223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Crank-Nicholson method</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical analysis</topic><topic>Partial differential equations</topic><topic>Theoretical</topic><topic>Time dependence</topic><topic>Transport equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubuis, Samuel</creatorcontrib><creatorcontrib>Picasso, Marco</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubuis, Samuel</au><au>Picasso, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Algorithm for the Time Dependent Transport Equation with Anisotropic Finite Elements and the Crank–Nicolson Scheme</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2018-04</date><risdate>2018</risdate><volume>75</volume><issue>1</issue><spage>350</spage><epage>375</epage><pages>350-375</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>Anisotropic finite elements and the Crank–Nicolson scheme are considered to solve the time dependent transport equation. Anisotropic a priori and a posteriori error estimates are derived. The sharpness of the error indicator is studied on non-adapted meshes and time steps. An adaptive algorithm in space and time is then designed to control the error at final time. Numerical results show the accuracy of the method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-017-0537-1</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2018-04, Vol.75 (1), p.350-375
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_2918313275
source Springer Link
subjects Adaptive algorithms
Algorithms
Computational Mathematics and Numerical Analysis
Crank-Nicholson method
Error analysis
Estimates
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Numerical analysis
Partial differential equations
Theoretical
Time dependence
Transport equations
title An Adaptive Algorithm for the Time Dependent Transport Equation with Anisotropic Finite Elements and the Crank–Nicolson Scheme
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T10%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Algorithm%20for%20the%20Time%20Dependent%20Transport%20Equation%20with%20Anisotropic%20Finite%20Elements%20and%20the%20Crank%E2%80%93Nicolson%20Scheme&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Dubuis,%20Samuel&rft.date=2018-04&rft.volume=75&rft.issue=1&rft.spage=350&rft.epage=375&rft.pages=350-375&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-017-0537-1&rft_dat=%3Cproquest_cross%3E2918313275%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-8b9a4c66131c97e64a9aed1ce67d5d77cae99eba9e40eddb4b4c3c5652ede0223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918313275&rft_id=info:pmid/&rfr_iscdi=true