Loading…
An Adaptive Algorithm for the Time Dependent Transport Equation with Anisotropic Finite Elements and the Crank–Nicolson Scheme
Anisotropic finite elements and the Crank–Nicolson scheme are considered to solve the time dependent transport equation. Anisotropic a priori and a posteriori error estimates are derived. The sharpness of the error indicator is studied on non-adapted meshes and time steps. An adaptive algorithm in s...
Saved in:
Published in: | Journal of scientific computing 2018-04, Vol.75 (1), p.350-375 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-8b9a4c66131c97e64a9aed1ce67d5d77cae99eba9e40eddb4b4c3c5652ede0223 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-8b9a4c66131c97e64a9aed1ce67d5d77cae99eba9e40eddb4b4c3c5652ede0223 |
container_end_page | 375 |
container_issue | 1 |
container_start_page | 350 |
container_title | Journal of scientific computing |
container_volume | 75 |
creator | Dubuis, Samuel Picasso, Marco |
description | Anisotropic finite elements and the Crank–Nicolson scheme are considered to solve the time dependent transport equation. Anisotropic a priori and a posteriori error estimates are derived. The sharpness of the error indicator is studied on non-adapted meshes and time steps. An adaptive algorithm in space and time is then designed to control the error at final time. Numerical results show the accuracy of the method. |
doi_str_mv | 10.1007/s10915-017-0537-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918313275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918313275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8b9a4c66131c97e64a9aed1ce67d5d77cae99eba9e40eddb4b4c3c5652ede0223</originalsourceid><addsrcrecordid>eNp1kM1OAyEURonRxFp9AHckrkdhZhiG5aTWn6TRhXVNKNxatIURqMZd38E39Emk1sSVq7s557vJQeiUknNKCL-IlAjKCkJ5QVjFC7qHBpTxquCNoPtoQNqWFbzm9SE6ivGZECJaUQ7QpnO4M6pP9g1wt3zywabFCs99wGkBeGpXgC-hB2fAJTwNysXeh4THr2uVrHf4PfO4czb6FHxvNb6yzibA4yWsshKxcuZnapTdl6_N553Vfhmz-aAXGTlGB3O1jHDye4fo8Wo8Hd0Uk_vr21E3KXTFRCramVC1bhpaUS04NLUSCgzV0HDDDOdagRAwUwJqAsbM6lmtK80aVoIBUpbVEJ3tdvvgX9cQk3z26-DyS1kK2la0KjnLFN1ROvgYA8xlH-xKhQ9JidyGlrvQMoeW29CSZqfcOTGz7gnC3_L_0jf66IPf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918313275</pqid></control><display><type>article</type><title>An Adaptive Algorithm for the Time Dependent Transport Equation with Anisotropic Finite Elements and the Crank–Nicolson Scheme</title><source>Springer Link</source><creator>Dubuis, Samuel ; Picasso, Marco</creator><creatorcontrib>Dubuis, Samuel ; Picasso, Marco</creatorcontrib><description>Anisotropic finite elements and the Crank–Nicolson scheme are considered to solve the time dependent transport equation. Anisotropic a priori and a posteriori error estimates are derived. The sharpness of the error indicator is studied on non-adapted meshes and time steps. An adaptive algorithm in space and time is then designed to control the error at final time. Numerical results show the accuracy of the method.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-017-0537-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive algorithms ; Algorithms ; Computational Mathematics and Numerical Analysis ; Crank-Nicholson method ; Error analysis ; Estimates ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Numerical analysis ; Partial differential equations ; Theoretical ; Time dependence ; Transport equations</subject><ispartof>Journal of scientific computing, 2018-04, Vol.75 (1), p.350-375</ispartof><rights>The Author(s) 2017</rights><rights>The Author(s) 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8b9a4c66131c97e64a9aed1ce67d5d77cae99eba9e40eddb4b4c3c5652ede0223</citedby><cites>FETCH-LOGICAL-c359t-8b9a4c66131c97e64a9aed1ce67d5d77cae99eba9e40eddb4b4c3c5652ede0223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Dubuis, Samuel</creatorcontrib><creatorcontrib>Picasso, Marco</creatorcontrib><title>An Adaptive Algorithm for the Time Dependent Transport Equation with Anisotropic Finite Elements and the Crank–Nicolson Scheme</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>Anisotropic finite elements and the Crank–Nicolson scheme are considered to solve the time dependent transport equation. Anisotropic a priori and a posteriori error estimates are derived. The sharpness of the error indicator is studied on non-adapted meshes and time steps. An adaptive algorithm in space and time is then designed to control the error at final time. Numerical results show the accuracy of the method.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Crank-Nicholson method</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical analysis</subject><subject>Partial differential equations</subject><subject>Theoretical</subject><subject>Time dependence</subject><subject>Transport equations</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OAyEURonRxFp9AHckrkdhZhiG5aTWn6TRhXVNKNxatIURqMZd38E39Emk1sSVq7s557vJQeiUknNKCL-IlAjKCkJ5QVjFC7qHBpTxquCNoPtoQNqWFbzm9SE6ivGZECJaUQ7QpnO4M6pP9g1wt3zywabFCs99wGkBeGpXgC-hB2fAJTwNysXeh4THr2uVrHf4PfO4czb6FHxvNb6yzibA4yWsshKxcuZnapTdl6_N553Vfhmz-aAXGTlGB3O1jHDye4fo8Wo8Hd0Uk_vr21E3KXTFRCramVC1bhpaUS04NLUSCgzV0HDDDOdagRAwUwJqAsbM6lmtK80aVoIBUpbVEJ3tdvvgX9cQk3z26-DyS1kK2la0KjnLFN1ROvgYA8xlH-xKhQ9JidyGlrvQMoeW29CSZqfcOTGz7gnC3_L_0jf66IPf</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Dubuis, Samuel</creator><creator>Picasso, Marco</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>201804</creationdate><title>An Adaptive Algorithm for the Time Dependent Transport Equation with Anisotropic Finite Elements and the Crank–Nicolson Scheme</title><author>Dubuis, Samuel ; Picasso, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8b9a4c66131c97e64a9aed1ce67d5d77cae99eba9e40eddb4b4c3c5652ede0223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Crank-Nicholson method</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical analysis</topic><topic>Partial differential equations</topic><topic>Theoretical</topic><topic>Time dependence</topic><topic>Transport equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubuis, Samuel</creatorcontrib><creatorcontrib>Picasso, Marco</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubuis, Samuel</au><au>Picasso, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Algorithm for the Time Dependent Transport Equation with Anisotropic Finite Elements and the Crank–Nicolson Scheme</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2018-04</date><risdate>2018</risdate><volume>75</volume><issue>1</issue><spage>350</spage><epage>375</epage><pages>350-375</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>Anisotropic finite elements and the Crank–Nicolson scheme are considered to solve the time dependent transport equation. Anisotropic a priori and a posteriori error estimates are derived. The sharpness of the error indicator is studied on non-adapted meshes and time steps. An adaptive algorithm in space and time is then designed to control the error at final time. Numerical results show the accuracy of the method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-017-0537-1</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2018-04, Vol.75 (1), p.350-375 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_journals_2918313275 |
source | Springer Link |
subjects | Adaptive algorithms Algorithms Computational Mathematics and Numerical Analysis Crank-Nicholson method Error analysis Estimates Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Numerical analysis Partial differential equations Theoretical Time dependence Transport equations |
title | An Adaptive Algorithm for the Time Dependent Transport Equation with Anisotropic Finite Elements and the Crank–Nicolson Scheme |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T10%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Algorithm%20for%20the%20Time%20Dependent%20Transport%20Equation%20with%20Anisotropic%20Finite%20Elements%20and%20the%20Crank%E2%80%93Nicolson%20Scheme&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Dubuis,%20Samuel&rft.date=2018-04&rft.volume=75&rft.issue=1&rft.spage=350&rft.epage=375&rft.pages=350-375&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-017-0537-1&rft_dat=%3Cproquest_cross%3E2918313275%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-8b9a4c66131c97e64a9aed1ce67d5d77cae99eba9e40eddb4b4c3c5652ede0223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918313275&rft_id=info:pmid/&rfr_iscdi=true |