Loading…
Implicit Multiderivative Collocation Solvers for Linear Partial Differential Equations with Discontinuous Galerkin Spatial Discretizations
In this work, we construct novel discretizations for the unsteady convection–diffusion equation. Our discretization relies on multiderivative time integrators together with a novel discretization that reduces the total number of unkowns for the solver. These type of temporal discretizations come fro...
Saved in:
Published in: | Journal of scientific computing 2017-12, Vol.73 (2-3), p.1145-1163 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-20735306d4ffeb7709016ab2e2757c3f8f1bec3a176562a36361b98c516f62f43 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-20735306d4ffeb7709016ab2e2757c3f8f1bec3a176562a36361b98c516f62f43 |
container_end_page | 1163 |
container_issue | 2-3 |
container_start_page | 1145 |
container_title | Journal of scientific computing |
container_volume | 73 |
creator | Schütz, Jochen Seal, David C. Jaust, Alexander |
description | In this work, we construct novel discretizations for the unsteady convection–diffusion equation. Our discretization relies on multiderivative time integrators together with a novel discretization that reduces the total number of unkowns for the solver. These type of temporal discretizations come from an umbrella class of methods that include Lax–Wendroff (Taylor) as well as Runge–Kutta methods as special cases. We include two-point collocation methods with multiple time derivatives as well as a sixth-order fully implicit collocation method that only requires a total of three stages. Numerical results for a number of sample linear problems indicate the expected order of accuracy and indicate we can take arbitrarily large time steps. |
doi_str_mv | 10.1007/s10915-017-0485-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918313573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918313573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-20735306d4ffeb7709016ab2e2757c3f8f1bec3a176562a36361b98c516f62f43</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMoWKsP4C7gejR3MpNMllK1FioK6jqkaaKp00mbzFT0EXxq007Blav83O98Fw5C50AugRB-FYEIKDMCPCNFVWbiAA2g5DTjTMAhGpAqffKCF8foJMYFIURUIh-gn8lyVTvtWvzQ1a2bm-A2qnUbg0e-rr1Od9_gZ19vTIjY-oCnrjEq4CcVWqdqfOOsNcE0u8ftutsBEX-69j3NovZp0nS-i3isahM-XGpbqT0adTCt--6ZU3RkVR3N2f4cote725fRfTZ9HE9G19NMU2BtlhNOS0rYvEiLZ5wTQYCpWW5yXnJNbWVhZjRVwFnJckUZZTATlS6BWZbbgg7RRd-7Cn7dmdjKhe9Ck1bKXEBFgSZvKQV9SgcfYzBWroJbqvAlgcitctkrl0m53CqXIjF5z8SUbd5M-Gv-H_oFSIGG3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918313573</pqid></control><display><type>article</type><title>Implicit Multiderivative Collocation Solvers for Linear Partial Differential Equations with Discontinuous Galerkin Spatial Discretizations</title><source>Springer Nature</source><creator>Schütz, Jochen ; Seal, David C. ; Jaust, Alexander</creator><creatorcontrib>Schütz, Jochen ; Seal, David C. ; Jaust, Alexander</creatorcontrib><description>In this work, we construct novel discretizations for the unsteady convection–diffusion equation. Our discretization relies on multiderivative time integrators together with a novel discretization that reduces the total number of unkowns for the solver. These type of temporal discretizations come from an umbrella class of methods that include Lax–Wendroff (Taylor) as well as Runge–Kutta methods as special cases. We include two-point collocation methods with multiple time derivatives as well as a sixth-order fully implicit collocation method that only requires a total of three stages. Numerical results for a number of sample linear problems indicate the expected order of accuracy and indicate we can take arbitrarily large time steps.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-017-0485-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Collocation methods ; Computational Mathematics and Numerical Analysis ; Convection-diffusion equation ; Discretization ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Methods ; Ordinary differential equations ; Partial differential equations ; Runge-Kutta method ; Solvers ; Theoretical</subject><ispartof>Journal of scientific computing, 2017-12, Vol.73 (2-3), p.1145-1163</ispartof><rights>Springer Science+Business Media, LLC (outside the USA) 2017</rights><rights>Springer Science+Business Media, LLC (outside the USA) 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-20735306d4ffeb7709016ab2e2757c3f8f1bec3a176562a36361b98c516f62f43</citedby><cites>FETCH-LOGICAL-c316t-20735306d4ffeb7709016ab2e2757c3f8f1bec3a176562a36361b98c516f62f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schütz, Jochen</creatorcontrib><creatorcontrib>Seal, David C.</creatorcontrib><creatorcontrib>Jaust, Alexander</creatorcontrib><title>Implicit Multiderivative Collocation Solvers for Linear Partial Differential Equations with Discontinuous Galerkin Spatial Discretizations</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>In this work, we construct novel discretizations for the unsteady convection–diffusion equation. Our discretization relies on multiderivative time integrators together with a novel discretization that reduces the total number of unkowns for the solver. These type of temporal discretizations come from an umbrella class of methods that include Lax–Wendroff (Taylor) as well as Runge–Kutta methods as special cases. We include two-point collocation methods with multiple time derivatives as well as a sixth-order fully implicit collocation method that only requires a total of three stages. Numerical results for a number of sample linear problems indicate the expected order of accuracy and indicate we can take arbitrarily large time steps.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Collocation methods</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convection-diffusion equation</subject><subject>Discretization</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Runge-Kutta method</subject><subject>Solvers</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEURoMoWKsP4C7gejR3MpNMllK1FioK6jqkaaKp00mbzFT0EXxq007Blav83O98Fw5C50AugRB-FYEIKDMCPCNFVWbiAA2g5DTjTMAhGpAqffKCF8foJMYFIURUIh-gn8lyVTvtWvzQ1a2bm-A2qnUbg0e-rr1Od9_gZ19vTIjY-oCnrjEq4CcVWqdqfOOsNcE0u8ftutsBEX-69j3NovZp0nS-i3isahM-XGpbqT0adTCt--6ZU3RkVR3N2f4cote725fRfTZ9HE9G19NMU2BtlhNOS0rYvEiLZ5wTQYCpWW5yXnJNbWVhZjRVwFnJckUZZTATlS6BWZbbgg7RRd-7Cn7dmdjKhe9Ck1bKXEBFgSZvKQV9SgcfYzBWroJbqvAlgcitctkrl0m53CqXIjF5z8SUbd5M-Gv-H_oFSIGG3Q</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Schütz, Jochen</creator><creator>Seal, David C.</creator><creator>Jaust, Alexander</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20171201</creationdate><title>Implicit Multiderivative Collocation Solvers for Linear Partial Differential Equations with Discontinuous Galerkin Spatial Discretizations</title><author>Schütz, Jochen ; Seal, David C. ; Jaust, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-20735306d4ffeb7709016ab2e2757c3f8f1bec3a176562a36361b98c516f62f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Collocation methods</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convection-diffusion equation</topic><topic>Discretization</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Runge-Kutta method</topic><topic>Solvers</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schütz, Jochen</creatorcontrib><creatorcontrib>Seal, David C.</creatorcontrib><creatorcontrib>Jaust, Alexander</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schütz, Jochen</au><au>Seal, David C.</au><au>Jaust, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implicit Multiderivative Collocation Solvers for Linear Partial Differential Equations with Discontinuous Galerkin Spatial Discretizations</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>73</volume><issue>2-3</issue><spage>1145</spage><epage>1163</epage><pages>1145-1163</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>In this work, we construct novel discretizations for the unsteady convection–diffusion equation. Our discretization relies on multiderivative time integrators together with a novel discretization that reduces the total number of unkowns for the solver. These type of temporal discretizations come from an umbrella class of methods that include Lax–Wendroff (Taylor) as well as Runge–Kutta methods as special cases. We include two-point collocation methods with multiple time derivatives as well as a sixth-order fully implicit collocation method that only requires a total of three stages. Numerical results for a number of sample linear problems indicate the expected order of accuracy and indicate we can take arbitrarily large time steps.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-017-0485-9</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2017-12, Vol.73 (2-3), p.1145-1163 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_journals_2918313573 |
source | Springer Nature |
subjects | Accuracy Algorithms Collocation methods Computational Mathematics and Numerical Analysis Convection-diffusion equation Discretization Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Methods Ordinary differential equations Partial differential equations Runge-Kutta method Solvers Theoretical |
title | Implicit Multiderivative Collocation Solvers for Linear Partial Differential Equations with Discontinuous Galerkin Spatial Discretizations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implicit%20Multiderivative%20Collocation%20Solvers%20for%20Linear%20Partial%20Differential%20Equations%20with%20Discontinuous%20Galerkin%20Spatial%20Discretizations&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Sch%C3%BCtz,%20Jochen&rft.date=2017-12-01&rft.volume=73&rft.issue=2-3&rft.spage=1145&rft.epage=1163&rft.pages=1145-1163&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-017-0485-9&rft_dat=%3Cproquest_cross%3E2918313573%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-20735306d4ffeb7709016ab2e2757c3f8f1bec3a176562a36361b98c516f62f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918313573&rft_id=info:pmid/&rfr_iscdi=true |