Loading…
Equivalent Extensions of Hamilton–Jacobi–Bellman Equations on Hypersurfaces
We present a new formulation for the computation of solutions of a class of Hamilton Jacobi Bellman (HJB) equations on closed smooth surfaces of co-dimension one. For the class of equations considered in this paper, the viscosity solution of the HJB equation is equivalent to the value function of a...
Saved in:
Published in: | Journal of scientific computing 2020-09, Vol.84 (3), p.43, Article 43 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-7f69912297833183ef8c015d9af0004752755f7fc4eaaa2a01ac9d6494dc53593 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-7f69912297833183ef8c015d9af0004752755f7fc4eaaa2a01ac9d6494dc53593 |
container_end_page | |
container_issue | 3 |
container_start_page | 43 |
container_title | Journal of scientific computing |
container_volume | 84 |
creator | Martin, Lindsay Tsai, Yen-Hsi Richard |
description | We present a new formulation for the computation of solutions of a class of Hamilton Jacobi Bellman (HJB) equations on closed smooth surfaces of co-dimension one. For the class of equations considered in this paper, the viscosity solution of the HJB equation is equivalent to the value function of a corresponding optimal control problem. In this work, we extend the optimal control problem given on the surface to an equivalent one defined in a sufficiently thin narrow band of the co-dimensional one surface. The extension is done appropriately so that the corresponding HJB equation, in the narrow band, has a unique viscosity solution which is identical to the constant normal extension of the value function of the original optimal control problem. With this framework, one can easily use existing (high order) numerical methods developed on Cartesian grids to solve HJB equations on surfaces, with a computational cost that scales with the dimension of the surfaces. This framework also provides a systematic way for solving HJB equations on the unstructured point clouds that are sampled from the surface. |
doi_str_mv | 10.1007/s10915-020-01292-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918315283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918315283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7f69912297833183ef8c015d9af0004752755f7fc4eaaa2a01ac9d6494dc53593</originalsourceid><addsrcrecordid>eNp9kD1OAzEQRi0EEiFwAaqVqA3-Wcc7JUQLAUVKA7VlHBtttLETexeRVNyBG3ISDItERzVTfO_N6EPonJJLSoi8SpQAFZgwggllwPD-AI2okBzLCdBDNCJVJbAsZXmMTlJaEUKgAjZCi3rbN6-6tb4r6rfO-tQEn4rgipleN20X_Of7x4M24bnJy41t27X2RYZ0NwR9MdttbEx9dNrYdIqOnG6TPfudY_R0Wz9OZ3i-uLufXs-x4RQ6LN0EgDIGsuKcVty6yhAqlqBdfq2UgkkhnHSmtFprpgnVBpaTEsqlEVwAH6OLwbuJYdvb1KlV6KPPJxWDLKSCZfMYsSFlYkgpWqc2sVnruFOUqO_i1FCcysWpn-LUPkN8gFIO-xcb_9T_UF87iHMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918315283</pqid></control><display><type>article</type><title>Equivalent Extensions of Hamilton–Jacobi–Bellman Equations on Hypersurfaces</title><source>Springer Nature</source><creator>Martin, Lindsay ; Tsai, Yen-Hsi Richard</creator><creatorcontrib>Martin, Lindsay ; Tsai, Yen-Hsi Richard</creatorcontrib><description>We present a new formulation for the computation of solutions of a class of Hamilton Jacobi Bellman (HJB) equations on closed smooth surfaces of co-dimension one. For the class of equations considered in this paper, the viscosity solution of the HJB equation is equivalent to the value function of a corresponding optimal control problem. In this work, we extend the optimal control problem given on the surface to an equivalent one defined in a sufficiently thin narrow band of the co-dimensional one surface. The extension is done appropriately so that the corresponding HJB equation, in the narrow band, has a unique viscosity solution which is identical to the constant normal extension of the value function of the original optimal control problem. With this framework, one can easily use existing (high order) numerical methods developed on Cartesian grids to solve HJB equations on surfaces, with a computational cost that scales with the dimension of the surfaces. This framework also provides a systematic way for solving HJB equations on the unstructured point clouds that are sampled from the surface.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-020-01292-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computational Mathematics and Numerical Analysis ; Equivalence ; Euclidean space ; Hyperspaces ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Methods ; Numerical methods ; Optimal control ; Theoretical ; Viscosity</subject><ispartof>Journal of scientific computing, 2020-09, Vol.84 (3), p.43, Article 43</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7f69912297833183ef8c015d9af0004752755f7fc4eaaa2a01ac9d6494dc53593</citedby><cites>FETCH-LOGICAL-c319t-7f69912297833183ef8c015d9af0004752755f7fc4eaaa2a01ac9d6494dc53593</cites><orcidid>0000-0001-9809-9309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Martin, Lindsay</creatorcontrib><creatorcontrib>Tsai, Yen-Hsi Richard</creatorcontrib><title>Equivalent Extensions of Hamilton–Jacobi–Bellman Equations on Hypersurfaces</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>We present a new formulation for the computation of solutions of a class of Hamilton Jacobi Bellman (HJB) equations on closed smooth surfaces of co-dimension one. For the class of equations considered in this paper, the viscosity solution of the HJB equation is equivalent to the value function of a corresponding optimal control problem. In this work, we extend the optimal control problem given on the surface to an equivalent one defined in a sufficiently thin narrow band of the co-dimensional one surface. The extension is done appropriately so that the corresponding HJB equation, in the narrow band, has a unique viscosity solution which is identical to the constant normal extension of the value function of the original optimal control problem. With this framework, one can easily use existing (high order) numerical methods developed on Cartesian grids to solve HJB equations on surfaces, with a computational cost that scales with the dimension of the surfaces. This framework also provides a systematic way for solving HJB equations on the unstructured point clouds that are sampled from the surface.</description><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Equivalence</subject><subject>Euclidean space</subject><subject>Hyperspaces</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Numerical methods</subject><subject>Optimal control</subject><subject>Theoretical</subject><subject>Viscosity</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OAzEQRi0EEiFwAaqVqA3-Wcc7JUQLAUVKA7VlHBtttLETexeRVNyBG3ISDItERzVTfO_N6EPonJJLSoi8SpQAFZgwggllwPD-AI2okBzLCdBDNCJVJbAsZXmMTlJaEUKgAjZCi3rbN6-6tb4r6rfO-tQEn4rgipleN20X_Of7x4M24bnJy41t27X2RYZ0NwR9MdttbEx9dNrYdIqOnG6TPfudY_R0Wz9OZ3i-uLufXs-x4RQ6LN0EgDIGsuKcVty6yhAqlqBdfq2UgkkhnHSmtFprpgnVBpaTEsqlEVwAH6OLwbuJYdvb1KlV6KPPJxWDLKSCZfMYsSFlYkgpWqc2sVnruFOUqO_i1FCcysWpn-LUPkN8gFIO-xcb_9T_UF87iHMU</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Martin, Lindsay</creator><creator>Tsai, Yen-Hsi Richard</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-9809-9309</orcidid></search><sort><creationdate>20200901</creationdate><title>Equivalent Extensions of Hamilton–Jacobi–Bellman Equations on Hypersurfaces</title><author>Martin, Lindsay ; Tsai, Yen-Hsi Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7f69912297833183ef8c015d9af0004752755f7fc4eaaa2a01ac9d6494dc53593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Equivalence</topic><topic>Euclidean space</topic><topic>Hyperspaces</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Numerical methods</topic><topic>Optimal control</topic><topic>Theoretical</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Lindsay</creatorcontrib><creatorcontrib>Tsai, Yen-Hsi Richard</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Lindsay</au><au>Tsai, Yen-Hsi Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equivalent Extensions of Hamilton–Jacobi–Bellman Equations on Hypersurfaces</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>84</volume><issue>3</issue><spage>43</spage><pages>43-</pages><artnum>43</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>We present a new formulation for the computation of solutions of a class of Hamilton Jacobi Bellman (HJB) equations on closed smooth surfaces of co-dimension one. For the class of equations considered in this paper, the viscosity solution of the HJB equation is equivalent to the value function of a corresponding optimal control problem. In this work, we extend the optimal control problem given on the surface to an equivalent one defined in a sufficiently thin narrow band of the co-dimensional one surface. The extension is done appropriately so that the corresponding HJB equation, in the narrow band, has a unique viscosity solution which is identical to the constant normal extension of the value function of the original optimal control problem. With this framework, one can easily use existing (high order) numerical methods developed on Cartesian grids to solve HJB equations on surfaces, with a computational cost that scales with the dimension of the surfaces. This framework also provides a systematic way for solving HJB equations on the unstructured point clouds that are sampled from the surface.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-020-01292-z</doi><orcidid>https://orcid.org/0000-0001-9809-9309</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2020-09, Vol.84 (3), p.43, Article 43 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_journals_2918315283 |
source | Springer Nature |
subjects | Algorithms Computational Mathematics and Numerical Analysis Equivalence Euclidean space Hyperspaces Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Methods Numerical methods Optimal control Theoretical Viscosity |
title | Equivalent Extensions of Hamilton–Jacobi–Bellman Equations on Hypersurfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A25%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equivalent%20Extensions%20of%20Hamilton%E2%80%93Jacobi%E2%80%93Bellman%20Equations%20on%20Hypersurfaces&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Martin,%20Lindsay&rft.date=2020-09-01&rft.volume=84&rft.issue=3&rft.spage=43&rft.pages=43-&rft.artnum=43&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-020-01292-z&rft_dat=%3Cproquest_cross%3E2918315283%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-7f69912297833183ef8c015d9af0004752755f7fc4eaaa2a01ac9d6494dc53593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918315283&rft_id=info:pmid/&rfr_iscdi=true |