Loading…

Equivalent Extensions of Hamilton–Jacobi–Bellman Equations on Hypersurfaces

We present a new formulation for the computation of solutions of a class of Hamilton Jacobi Bellman (HJB) equations on closed smooth surfaces of co-dimension one. For the class of equations considered in this paper, the viscosity solution of the HJB equation is equivalent to the value function of a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of scientific computing 2020-09, Vol.84 (3), p.43, Article 43
Main Authors: Martin, Lindsay, Tsai, Yen-Hsi Richard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-7f69912297833183ef8c015d9af0004752755f7fc4eaaa2a01ac9d6494dc53593
cites cdi_FETCH-LOGICAL-c319t-7f69912297833183ef8c015d9af0004752755f7fc4eaaa2a01ac9d6494dc53593
container_end_page
container_issue 3
container_start_page 43
container_title Journal of scientific computing
container_volume 84
creator Martin, Lindsay
Tsai, Yen-Hsi Richard
description We present a new formulation for the computation of solutions of a class of Hamilton Jacobi Bellman (HJB) equations on closed smooth surfaces of co-dimension one. For the class of equations considered in this paper, the viscosity solution of the HJB equation is equivalent to the value function of a corresponding optimal control problem. In this work, we extend the optimal control problem given on the surface to an equivalent one defined in a sufficiently thin narrow band of the co-dimensional one surface. The extension is done appropriately so that the corresponding HJB equation, in the narrow band, has a unique viscosity solution which is identical to the constant normal extension of the value function of the original optimal control problem. With this framework, one can easily use existing (high order) numerical methods developed on Cartesian grids to solve HJB equations on surfaces, with a computational cost that scales with the dimension of the surfaces. This framework also provides a systematic way for solving HJB equations on the unstructured point clouds that are sampled from the surface.
doi_str_mv 10.1007/s10915-020-01292-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918315283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918315283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7f69912297833183ef8c015d9af0004752755f7fc4eaaa2a01ac9d6494dc53593</originalsourceid><addsrcrecordid>eNp9kD1OAzEQRi0EEiFwAaqVqA3-Wcc7JUQLAUVKA7VlHBtttLETexeRVNyBG3ISDItERzVTfO_N6EPonJJLSoi8SpQAFZgwggllwPD-AI2okBzLCdBDNCJVJbAsZXmMTlJaEUKgAjZCi3rbN6-6tb4r6rfO-tQEn4rgipleN20X_Of7x4M24bnJy41t27X2RYZ0NwR9MdttbEx9dNrYdIqOnG6TPfudY_R0Wz9OZ3i-uLufXs-x4RQ6LN0EgDIGsuKcVty6yhAqlqBdfq2UgkkhnHSmtFprpgnVBpaTEsqlEVwAH6OLwbuJYdvb1KlV6KPPJxWDLKSCZfMYsSFlYkgpWqc2sVnruFOUqO_i1FCcysWpn-LUPkN8gFIO-xcb_9T_UF87iHMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918315283</pqid></control><display><type>article</type><title>Equivalent Extensions of Hamilton–Jacobi–Bellman Equations on Hypersurfaces</title><source>Springer Nature</source><creator>Martin, Lindsay ; Tsai, Yen-Hsi Richard</creator><creatorcontrib>Martin, Lindsay ; Tsai, Yen-Hsi Richard</creatorcontrib><description>We present a new formulation for the computation of solutions of a class of Hamilton Jacobi Bellman (HJB) equations on closed smooth surfaces of co-dimension one. For the class of equations considered in this paper, the viscosity solution of the HJB equation is equivalent to the value function of a corresponding optimal control problem. In this work, we extend the optimal control problem given on the surface to an equivalent one defined in a sufficiently thin narrow band of the co-dimensional one surface. The extension is done appropriately so that the corresponding HJB equation, in the narrow band, has a unique viscosity solution which is identical to the constant normal extension of the value function of the original optimal control problem. With this framework, one can easily use existing (high order) numerical methods developed on Cartesian grids to solve HJB equations on surfaces, with a computational cost that scales with the dimension of the surfaces. This framework also provides a systematic way for solving HJB equations on the unstructured point clouds that are sampled from the surface.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-020-01292-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computational Mathematics and Numerical Analysis ; Equivalence ; Euclidean space ; Hyperspaces ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Methods ; Numerical methods ; Optimal control ; Theoretical ; Viscosity</subject><ispartof>Journal of scientific computing, 2020-09, Vol.84 (3), p.43, Article 43</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7f69912297833183ef8c015d9af0004752755f7fc4eaaa2a01ac9d6494dc53593</citedby><cites>FETCH-LOGICAL-c319t-7f69912297833183ef8c015d9af0004752755f7fc4eaaa2a01ac9d6494dc53593</cites><orcidid>0000-0001-9809-9309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Martin, Lindsay</creatorcontrib><creatorcontrib>Tsai, Yen-Hsi Richard</creatorcontrib><title>Equivalent Extensions of Hamilton–Jacobi–Bellman Equations on Hypersurfaces</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>We present a new formulation for the computation of solutions of a class of Hamilton Jacobi Bellman (HJB) equations on closed smooth surfaces of co-dimension one. For the class of equations considered in this paper, the viscosity solution of the HJB equation is equivalent to the value function of a corresponding optimal control problem. In this work, we extend the optimal control problem given on the surface to an equivalent one defined in a sufficiently thin narrow band of the co-dimensional one surface. The extension is done appropriately so that the corresponding HJB equation, in the narrow band, has a unique viscosity solution which is identical to the constant normal extension of the value function of the original optimal control problem. With this framework, one can easily use existing (high order) numerical methods developed on Cartesian grids to solve HJB equations on surfaces, with a computational cost that scales with the dimension of the surfaces. This framework also provides a systematic way for solving HJB equations on the unstructured point clouds that are sampled from the surface.</description><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Equivalence</subject><subject>Euclidean space</subject><subject>Hyperspaces</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Numerical methods</subject><subject>Optimal control</subject><subject>Theoretical</subject><subject>Viscosity</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OAzEQRi0EEiFwAaqVqA3-Wcc7JUQLAUVKA7VlHBtttLETexeRVNyBG3ISDItERzVTfO_N6EPonJJLSoi8SpQAFZgwggllwPD-AI2okBzLCdBDNCJVJbAsZXmMTlJaEUKgAjZCi3rbN6-6tb4r6rfO-tQEn4rgipleN20X_Of7x4M24bnJy41t27X2RYZ0NwR9MdttbEx9dNrYdIqOnG6TPfudY_R0Wz9OZ3i-uLufXs-x4RQ6LN0EgDIGsuKcVty6yhAqlqBdfq2UgkkhnHSmtFprpgnVBpaTEsqlEVwAH6OLwbuJYdvb1KlV6KPPJxWDLKSCZfMYsSFlYkgpWqc2sVnruFOUqO_i1FCcysWpn-LUPkN8gFIO-xcb_9T_UF87iHMU</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Martin, Lindsay</creator><creator>Tsai, Yen-Hsi Richard</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-9809-9309</orcidid></search><sort><creationdate>20200901</creationdate><title>Equivalent Extensions of Hamilton–Jacobi–Bellman Equations on Hypersurfaces</title><author>Martin, Lindsay ; Tsai, Yen-Hsi Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7f69912297833183ef8c015d9af0004752755f7fc4eaaa2a01ac9d6494dc53593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Equivalence</topic><topic>Euclidean space</topic><topic>Hyperspaces</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Numerical methods</topic><topic>Optimal control</topic><topic>Theoretical</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Lindsay</creatorcontrib><creatorcontrib>Tsai, Yen-Hsi Richard</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Lindsay</au><au>Tsai, Yen-Hsi Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equivalent Extensions of Hamilton–Jacobi–Bellman Equations on Hypersurfaces</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>84</volume><issue>3</issue><spage>43</spage><pages>43-</pages><artnum>43</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>We present a new formulation for the computation of solutions of a class of Hamilton Jacobi Bellman (HJB) equations on closed smooth surfaces of co-dimension one. For the class of equations considered in this paper, the viscosity solution of the HJB equation is equivalent to the value function of a corresponding optimal control problem. In this work, we extend the optimal control problem given on the surface to an equivalent one defined in a sufficiently thin narrow band of the co-dimensional one surface. The extension is done appropriately so that the corresponding HJB equation, in the narrow band, has a unique viscosity solution which is identical to the constant normal extension of the value function of the original optimal control problem. With this framework, one can easily use existing (high order) numerical methods developed on Cartesian grids to solve HJB equations on surfaces, with a computational cost that scales with the dimension of the surfaces. This framework also provides a systematic way for solving HJB equations on the unstructured point clouds that are sampled from the surface.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-020-01292-z</doi><orcidid>https://orcid.org/0000-0001-9809-9309</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2020-09, Vol.84 (3), p.43, Article 43
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_2918315283
source Springer Nature
subjects Algorithms
Computational Mathematics and Numerical Analysis
Equivalence
Euclidean space
Hyperspaces
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Methods
Numerical methods
Optimal control
Theoretical
Viscosity
title Equivalent Extensions of Hamilton–Jacobi–Bellman Equations on Hypersurfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A25%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equivalent%20Extensions%20of%20Hamilton%E2%80%93Jacobi%E2%80%93Bellman%20Equations%20on%20Hypersurfaces&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Martin,%20Lindsay&rft.date=2020-09-01&rft.volume=84&rft.issue=3&rft.spage=43&rft.pages=43-&rft.artnum=43&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-020-01292-z&rft_dat=%3Cproquest_cross%3E2918315283%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-7f69912297833183ef8c015d9af0004752755f7fc4eaaa2a01ac9d6494dc53593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918315283&rft_id=info:pmid/&rfr_iscdi=true