Loading…

Conditioning of a Hybrid High-Order Scheme on Meshes with Small Faces

We conduct a condition number analysis of a Hybrid High-Order (HHO) scheme for the Poisson problem. We find the condition number of the statically condensed system to be independent of the number of faces in each element, or the relative size between an element and its faces. The dependence of the c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of scientific computing 2022-08, Vol.92 (2), p.71, Article 71
Main Authors: Badia, Santiago, Droniou, Jérôme, Yemm, Liam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-d237c2fd70c0ae5c9f94f9721a8b886e616a676730c35560ab54730a6250352e3
cites cdi_FETCH-LOGICAL-c293t-d237c2fd70c0ae5c9f94f9721a8b886e616a676730c35560ab54730a6250352e3
container_end_page
container_issue 2
container_start_page 71
container_title Journal of scientific computing
container_volume 92
creator Badia, Santiago
Droniou, Jérôme
Yemm, Liam
description We conduct a condition number analysis of a Hybrid High-Order (HHO) scheme for the Poisson problem. We find the condition number of the statically condensed system to be independent of the number of faces in each element, or the relative size between an element and its faces. The dependence of the condition number on the polynomial degree is tracked. Next, we consider HHO schemes on cut background meshes, which are commonly used in unfitted discretisations. It is well known that the linear systems obtained on these meshes can be arbitrarily ill-conditioned due to the presence of sliver-cut and small-cut elements. We show that the condition number arising from HHO schemes on such meshes is not as negatively effected as those arising from conforming methods. We describe how the condition number can be improved by aggregating ill-conditioned elements with their neighbours.
doi_str_mv 10.1007/s10915-022-01913-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918315770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918315770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d237c2fd70c0ae5c9f94f9721a8b886e616a676730c35560ab54730a6250352e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SSbL6OUlorVHqonkOazXa3tLs12SL996au4M3TMPA-7zAPQvcUHimAekoUDBUEGCNADeXEXKARFYoTJQ29RCPQWhBVqOIa3aS0BQCjDRuh6aRry6ZvurZpN7irsMPz0zo2JZ43m5osYxkiXvk67APuWvwWUh0S_mr6Gq_2brfDM-dDukVXldulcPc7x-hjNn2fzMli-fI6eV4QzwzvScm48qwqFXhwQXhTmaIyilGn11rLIKl0UknFwXMhJLi1KPLiJBPABQt8jB6G3kPsPo8h9XbbHWObT1pmqOb5YwU5xYaUj11KMVT2EJu9iydLwZ512UGXzbrsjy5rMsQHKOVwuwnxr_of6htxsWqh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918315770</pqid></control><display><type>article</type><title>Conditioning of a Hybrid High-Order Scheme on Meshes with Small Faces</title><source>Springer Nature</source><creator>Badia, Santiago ; Droniou, Jérôme ; Yemm, Liam</creator><creatorcontrib>Badia, Santiago ; Droniou, Jérôme ; Yemm, Liam</creatorcontrib><description>We conduct a condition number analysis of a Hybrid High-Order (HHO) scheme for the Poisson problem. We find the condition number of the statically condensed system to be independent of the number of faces in each element, or the relative size between an element and its faces. The dependence of the condition number on the polynomial degree is tracked. Next, we consider HHO schemes on cut background meshes, which are commonly used in unfitted discretisations. It is well known that the linear systems obtained on these meshes can be arbitrarily ill-conditioned due to the presence of sliver-cut and small-cut elements. We show that the condition number arising from HHO schemes on such meshes is not as negatively effected as those arising from conforming methods. We describe how the condition number can be improved by aggregating ill-conditioned elements with their neighbours.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-022-01913-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Boundary conditions ; Computational Mathematics and Numerical Analysis ; Conditioning ; Estimates ; Finite element analysis ; Linear systems ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Methods ; Partial differential equations ; Polynomials ; Theoretical</subject><ispartof>Journal of scientific computing, 2022-08, Vol.92 (2), p.71, Article 71</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d237c2fd70c0ae5c9f94f9721a8b886e616a676730c35560ab54730a6250352e3</citedby><cites>FETCH-LOGICAL-c293t-d237c2fd70c0ae5c9f94f9721a8b886e616a676730c35560ab54730a6250352e3</cites><orcidid>0000-0003-2120-4048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Badia, Santiago</creatorcontrib><creatorcontrib>Droniou, Jérôme</creatorcontrib><creatorcontrib>Yemm, Liam</creatorcontrib><title>Conditioning of a Hybrid High-Order Scheme on Meshes with Small Faces</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>We conduct a condition number analysis of a Hybrid High-Order (HHO) scheme for the Poisson problem. We find the condition number of the statically condensed system to be independent of the number of faces in each element, or the relative size between an element and its faces. The dependence of the condition number on the polynomial degree is tracked. Next, we consider HHO schemes on cut background meshes, which are commonly used in unfitted discretisations. It is well known that the linear systems obtained on these meshes can be arbitrarily ill-conditioned due to the presence of sliver-cut and small-cut elements. We show that the condition number arising from HHO schemes on such meshes is not as negatively effected as those arising from conforming methods. We describe how the condition number can be improved by aggregating ill-conditioned elements with their neighbours.</description><subject>Algorithms</subject><subject>Boundary conditions</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Conditioning</subject><subject>Estimates</subject><subject>Finite element analysis</subject><subject>Linear systems</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Partial differential equations</subject><subject>Polynomials</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SSbL6OUlorVHqonkOazXa3tLs12SL996au4M3TMPA-7zAPQvcUHimAekoUDBUEGCNADeXEXKARFYoTJQ29RCPQWhBVqOIa3aS0BQCjDRuh6aRry6ZvurZpN7irsMPz0zo2JZ43m5osYxkiXvk67APuWvwWUh0S_mr6Gq_2brfDM-dDukVXldulcPc7x-hjNn2fzMli-fI6eV4QzwzvScm48qwqFXhwQXhTmaIyilGn11rLIKl0UknFwXMhJLi1KPLiJBPABQt8jB6G3kPsPo8h9XbbHWObT1pmqOb5YwU5xYaUj11KMVT2EJu9iydLwZ512UGXzbrsjy5rMsQHKOVwuwnxr_of6htxsWqh</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Badia, Santiago</creator><creator>Droniou, Jérôme</creator><creator>Yemm, Liam</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-2120-4048</orcidid></search><sort><creationdate>20220801</creationdate><title>Conditioning of a Hybrid High-Order Scheme on Meshes with Small Faces</title><author>Badia, Santiago ; Droniou, Jérôme ; Yemm, Liam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d237c2fd70c0ae5c9f94f9721a8b886e616a676730c35560ab54730a6250352e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Boundary conditions</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Conditioning</topic><topic>Estimates</topic><topic>Finite element analysis</topic><topic>Linear systems</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Partial differential equations</topic><topic>Polynomials</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badia, Santiago</creatorcontrib><creatorcontrib>Droniou, Jérôme</creatorcontrib><creatorcontrib>Yemm, Liam</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badia, Santiago</au><au>Droniou, Jérôme</au><au>Yemm, Liam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditioning of a Hybrid High-Order Scheme on Meshes with Small Faces</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>92</volume><issue>2</issue><spage>71</spage><pages>71-</pages><artnum>71</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>We conduct a condition number analysis of a Hybrid High-Order (HHO) scheme for the Poisson problem. We find the condition number of the statically condensed system to be independent of the number of faces in each element, or the relative size between an element and its faces. The dependence of the condition number on the polynomial degree is tracked. Next, we consider HHO schemes on cut background meshes, which are commonly used in unfitted discretisations. It is well known that the linear systems obtained on these meshes can be arbitrarily ill-conditioned due to the presence of sliver-cut and small-cut elements. We show that the condition number arising from HHO schemes on such meshes is not as negatively effected as those arising from conforming methods. We describe how the condition number can be improved by aggregating ill-conditioned elements with their neighbours.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-022-01913-9</doi><orcidid>https://orcid.org/0000-0003-2120-4048</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2022-08, Vol.92 (2), p.71, Article 71
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_2918315770
source Springer Nature
subjects Algorithms
Boundary conditions
Computational Mathematics and Numerical Analysis
Conditioning
Estimates
Finite element analysis
Linear systems
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Methods
Partial differential equations
Polynomials
Theoretical
title Conditioning of a Hybrid High-Order Scheme on Meshes with Small Faces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A19%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditioning%20of%20a%20Hybrid%20High-Order%20Scheme%20on%20Meshes%20with%20Small%20Faces&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Badia,%20Santiago&rft.date=2022-08-01&rft.volume=92&rft.issue=2&rft.spage=71&rft.pages=71-&rft.artnum=71&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-022-01913-9&rft_dat=%3Cproquest_cross%3E2918315770%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-d237c2fd70c0ae5c9f94f9721a8b886e616a676730c35560ab54730a6250352e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918315770&rft_id=info:pmid/&rfr_iscdi=true