Loading…

A Dual Semismooth Newton Based Augmented Lagrangian Method for Large-Scale Linearly Constrained Sparse Group Square-Root Lasso Problems

Square-root Lasso problems have already be shown to be robust regression problems. Furthermore, square-root regression problems with structured sparsity also plays an important role in statistics and machine learning. In this paper, we focus on the numerical computation of large-scale linearly const...

Full description

Saved in:
Bibliographic Details
Published in:Journal of scientific computing 2023-08, Vol.96 (2), p.45, Article 45
Main Authors: Wang, Chengjing, Tang, Peipei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-e15fb435ab905f147fced40241449af9cc406556c5cd178f579572bc056ce6393
container_end_page
container_issue 2
container_start_page 45
container_title Journal of scientific computing
container_volume 96
creator Wang, Chengjing
Tang, Peipei
description Square-root Lasso problems have already be shown to be robust regression problems. Furthermore, square-root regression problems with structured sparsity also plays an important role in statistics and machine learning. In this paper, we focus on the numerical computation of large-scale linearly constrained sparse group square-root Lasso problems. In order to overcome the difficulty that there are two nonsmooth terms in the objective function, we propose a dual semismooth Newton (SSN) based augmented Lagrangian method (ALM) for it. That is, we apply the ALM to the dual problem with the subproblem solved by the SSN method. To apply the SSN method, the positive definiteness of the generalized Jacobian is very important. Hence we characterize the equivalence of its positive definiteness and the constraint nondegeneracy condition of the corresponding primal problem. In numerical implementation, we fully employ the second order sparsity so that the Newton direction can be efficiently obtained. Numerical experiments demonstrate the efficiency of the proposed algorithm.
doi_str_mv 10.1007/s10915-023-02271-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918316882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918316882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e15fb435ab905f147fced40241449af9cc406556c5cd178f579572bc056ce6393</originalsourceid><addsrcrecordid>eNp9UMlOwzAQtRBIlOUHOFnibLAdO46PpUBBKosonC3XmaStkrjYiSq-gN_GUCRuHEYz8_QW6SF0xugFo1RdRkY1k4TyLA1XjGz30IhJlRGVa7aPRrQoJFFCiUN0FOOaUqoLzUfoc4yvB9vgObSr2HrfL_EjbHvf4SsbocTjoW6h69M1s3WwXb2yHX6AfulLXPmQ0FADmTvbAJ6tOrCh-cAT38U-2PSWeL6xIQKeBj9s8Px9sAHIS8pJyhg9fg5-0UAbT9BBZZsIp7_7GL3d3rxO7sjsaXo_Gc-I44r2BJisFiKTdqGprJhQlYNSUC6YENpW2jlBcylzJ13JVFFJpaXiC0cTBHmms2N0vvPdBP8-QOzN2g-hS5GGa1ZkLC8Knlh8x3LBxxigMpuwam34MIya78LNrnCTCjc_hZttEmU7UUzkrobwZ_2P6gtYTYTe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918316882</pqid></control><display><type>article</type><title>A Dual Semismooth Newton Based Augmented Lagrangian Method for Large-Scale Linearly Constrained Sparse Group Square-Root Lasso Problems</title><source>Springer Link</source><creator>Wang, Chengjing ; Tang, Peipei</creator><creatorcontrib>Wang, Chengjing ; Tang, Peipei</creatorcontrib><description>Square-root Lasso problems have already be shown to be robust regression problems. Furthermore, square-root regression problems with structured sparsity also plays an important role in statistics and machine learning. In this paper, we focus on the numerical computation of large-scale linearly constrained sparse group square-root Lasso problems. In order to overcome the difficulty that there are two nonsmooth terms in the objective function, we propose a dual semismooth Newton (SSN) based augmented Lagrangian method (ALM) for it. That is, we apply the ALM to the dual problem with the subproblem solved by the SSN method. To apply the SSN method, the positive definiteness of the generalized Jacobian is very important. Hence we characterize the equivalence of its positive definiteness and the constraint nondegeneracy condition of the corresponding primal problem. In numerical implementation, we fully employ the second order sparsity so that the Newton direction can be efficiently obtained. Numerical experiments demonstrate the efficiency of the proposed algorithm.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-023-02271-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computational Mathematics and Numerical Analysis ; Constraints ; Feature selection ; Machine learning ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Numerical analysis ; Robustness (mathematics) ; Special Issue on Machine Learning on Scientific Computing ; Theoretical</subject><ispartof>Journal of scientific computing, 2023-08, Vol.96 (2), p.45, Article 45</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-e15fb435ab905f147fced40241449af9cc406556c5cd178f579572bc056ce6393</cites><orcidid>0000-0003-4137-8029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Chengjing</creatorcontrib><creatorcontrib>Tang, Peipei</creatorcontrib><title>A Dual Semismooth Newton Based Augmented Lagrangian Method for Large-Scale Linearly Constrained Sparse Group Square-Root Lasso Problems</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>Square-root Lasso problems have already be shown to be robust regression problems. Furthermore, square-root regression problems with structured sparsity also plays an important role in statistics and machine learning. In this paper, we focus on the numerical computation of large-scale linearly constrained sparse group square-root Lasso problems. In order to overcome the difficulty that there are two nonsmooth terms in the objective function, we propose a dual semismooth Newton (SSN) based augmented Lagrangian method (ALM) for it. That is, we apply the ALM to the dual problem with the subproblem solved by the SSN method. To apply the SSN method, the positive definiteness of the generalized Jacobian is very important. Hence we characterize the equivalence of its positive definiteness and the constraint nondegeneracy condition of the corresponding primal problem. In numerical implementation, we fully employ the second order sparsity so that the Newton direction can be efficiently obtained. Numerical experiments demonstrate the efficiency of the proposed algorithm.</description><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Constraints</subject><subject>Feature selection</subject><subject>Machine learning</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical analysis</subject><subject>Robustness (mathematics)</subject><subject>Special Issue on Machine Learning on Scientific Computing</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMlOwzAQtRBIlOUHOFnibLAdO46PpUBBKosonC3XmaStkrjYiSq-gN_GUCRuHEYz8_QW6SF0xugFo1RdRkY1k4TyLA1XjGz30IhJlRGVa7aPRrQoJFFCiUN0FOOaUqoLzUfoc4yvB9vgObSr2HrfL_EjbHvf4SsbocTjoW6h69M1s3WwXb2yHX6AfulLXPmQ0FADmTvbAJ6tOrCh-cAT38U-2PSWeL6xIQKeBj9s8Px9sAHIS8pJyhg9fg5-0UAbT9BBZZsIp7_7GL3d3rxO7sjsaXo_Gc-I44r2BJisFiKTdqGprJhQlYNSUC6YENpW2jlBcylzJ13JVFFJpaXiC0cTBHmms2N0vvPdBP8-QOzN2g-hS5GGa1ZkLC8Knlh8x3LBxxigMpuwam34MIya78LNrnCTCjc_hZttEmU7UUzkrobwZ_2P6gtYTYTe</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Wang, Chengjing</creator><creator>Tang, Peipei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-4137-8029</orcidid></search><sort><creationdate>20230801</creationdate><title>A Dual Semismooth Newton Based Augmented Lagrangian Method for Large-Scale Linearly Constrained Sparse Group Square-Root Lasso Problems</title><author>Wang, Chengjing ; Tang, Peipei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e15fb435ab905f147fced40241449af9cc406556c5cd178f579572bc056ce6393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Constraints</topic><topic>Feature selection</topic><topic>Machine learning</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical analysis</topic><topic>Robustness (mathematics)</topic><topic>Special Issue on Machine Learning on Scientific Computing</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chengjing</creatorcontrib><creatorcontrib>Tang, Peipei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chengjing</au><au>Tang, Peipei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Dual Semismooth Newton Based Augmented Lagrangian Method for Large-Scale Linearly Constrained Sparse Group Square-Root Lasso Problems</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>96</volume><issue>2</issue><spage>45</spage><pages>45-</pages><artnum>45</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>Square-root Lasso problems have already be shown to be robust regression problems. Furthermore, square-root regression problems with structured sparsity also plays an important role in statistics and machine learning. In this paper, we focus on the numerical computation of large-scale linearly constrained sparse group square-root Lasso problems. In order to overcome the difficulty that there are two nonsmooth terms in the objective function, we propose a dual semismooth Newton (SSN) based augmented Lagrangian method (ALM) for it. That is, we apply the ALM to the dual problem with the subproblem solved by the SSN method. To apply the SSN method, the positive definiteness of the generalized Jacobian is very important. Hence we characterize the equivalence of its positive definiteness and the constraint nondegeneracy condition of the corresponding primal problem. In numerical implementation, we fully employ the second order sparsity so that the Newton direction can be efficiently obtained. Numerical experiments demonstrate the efficiency of the proposed algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-023-02271-w</doi><orcidid>https://orcid.org/0000-0003-4137-8029</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2023-08, Vol.96 (2), p.45, Article 45
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_2918316882
source Springer Link
subjects Algorithms
Computational Mathematics and Numerical Analysis
Constraints
Feature selection
Machine learning
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Numerical analysis
Robustness (mathematics)
Special Issue on Machine Learning on Scientific Computing
Theoretical
title A Dual Semismooth Newton Based Augmented Lagrangian Method for Large-Scale Linearly Constrained Sparse Group Square-Root Lasso Problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A09%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Dual%20Semismooth%20Newton%20Based%20Augmented%20Lagrangian%20Method%20for%20Large-Scale%20Linearly%20Constrained%20Sparse%20Group%20Square-Root%20Lasso%20Problems&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Wang,%20Chengjing&rft.date=2023-08-01&rft.volume=96&rft.issue=2&rft.spage=45&rft.pages=45-&rft.artnum=45&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-023-02271-w&rft_dat=%3Cproquest_cross%3E2918316882%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-e15fb435ab905f147fced40241449af9cc406556c5cd178f579572bc056ce6393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918316882&rft_id=info:pmid/&rfr_iscdi=true