Loading…
Kernel-Based Methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds
In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM) and ghost point diffusion maps (GPDM), to solve the time-dependent advection-diffusion PDE on unknown smooth manifolds without and with boundaries. The core idea is to directly approximate the spatial components...
Saved in:
Published in: | Journal of scientific computing 2023, Vol.94 (1), p.5, Article 5 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-bdca9088aaaf9d68acec44401eaac70d8a63dd7a9a6d78130562377519b82e3f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-bdca9088aaaf9d68acec44401eaac70d8a63dd7a9a6d78130562377519b82e3f3 |
container_end_page | |
container_issue | 1 |
container_start_page | 5 |
container_title | Journal of scientific computing |
container_volume | 94 |
creator | Yan, Qile Jiang, Shixiao W. Harlim, John |
description | In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM) and ghost point diffusion maps (GPDM), to solve the time-dependent advection-diffusion PDE on unknown smooth manifolds without and with boundaries. The core idea is to directly approximate the spatial components of the differential operator on the manifold with a local integral operator and combine it with the standard implicit time difference scheme. When the manifold has a boundary, a simplified version of the GPDM approach is used to overcome the bias of the integral approximation near the boundary. The Monte-Carlo discretization of the integral operator over the point cloud data gives rise to a mesh-free formulation that is natural for randomly distributed points, even when the manifold is embedded in high-dimensional ambient space. Here, we establish the convergence of the proposed solver on appropriate topologies, depending on the distribution of point cloud data and boundary type. We provide numerical results to validate the convergence results on various examples that involve simple geometry and an unknown manifold. |
doi_str_mv | 10.1007/s10915-022-02045-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918317087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918317087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bdca9088aaaf9d68acec44401eaac70d8a63dd7a9a6d78130562377519b82e3f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMRvsOIntsbTlQ7RioCwslhufS6rUae2kFf8elyCxMZzuQ-97d3oQuqbklhLC7wIlkuaYpGkMkuX4cIIGNOcM80LSUzQgQuSYZzw7RxchrAkhUsh0gD5ewDuo8b0OYJI5tJ-NCYltfPLW1PvKrZJFtQE8gS04A65NRmYPZVs1Dk8qa7sQq2S66_RxFJLYzLWrbFObcInOrK4DXP3mIXp_mC7GT3j2-vg8Hs1wyahs8dKUWsb3tNZWmkLoEsosywgFrUtOjNAFM4ZrqQvDBWUkL1LGeU7lUqTALBuim37v1je7DkKr1k3nXTypUkkFo5wIHlVpryp9E4IHq7a-2mj_pShRR4aqZ6giQ_XDUB2iifWmEMVuBf5v9T-ubw9GdbU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918317087</pqid></control><display><type>article</type><title>Kernel-Based Methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds</title><source>Springer Nature</source><creator>Yan, Qile ; Jiang, Shixiao W. ; Harlim, John</creator><creatorcontrib>Yan, Qile ; Jiang, Shixiao W. ; Harlim, John</creatorcontrib><description>In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM) and ghost point diffusion maps (GPDM), to solve the time-dependent advection-diffusion PDE on unknown smooth manifolds without and with boundaries. The core idea is to directly approximate the spatial components of the differential operator on the manifold with a local integral operator and combine it with the standard implicit time difference scheme. When the manifold has a boundary, a simplified version of the GPDM approach is used to overcome the bias of the integral approximation near the boundary. The Monte-Carlo discretization of the integral operator over the point cloud data gives rise to a mesh-free formulation that is natural for randomly distributed points, even when the manifold is embedded in high-dimensional ambient space. Here, we establish the convergence of the proposed solver on appropriate topologies, depending on the distribution of point cloud data and boundary type. We provide numerical results to validate the convergence results on various examples that involve simple geometry and an unknown manifold.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-022-02045-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advection ; Advection-diffusion equation ; Algorithms ; Approximation ; Boundary conditions ; Computational Mathematics and Numerical Analysis ; Computer graphics ; Convergence ; Differential equations ; Manifolds (mathematics) ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Methods ; Operators (mathematics) ; Partial differential equations ; Theoretical ; Time dependence ; Topology</subject><ispartof>Journal of scientific computing, 2023, Vol.94 (1), p.5, Article 5</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bdca9088aaaf9d68acec44401eaac70d8a63dd7a9a6d78130562377519b82e3f3</citedby><cites>FETCH-LOGICAL-c319t-bdca9088aaaf9d68acec44401eaac70d8a63dd7a9a6d78130562377519b82e3f3</cites><orcidid>0000-0002-9054-4209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yan, Qile</creatorcontrib><creatorcontrib>Jiang, Shixiao W.</creatorcontrib><creatorcontrib>Harlim, John</creatorcontrib><title>Kernel-Based Methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM) and ghost point diffusion maps (GPDM), to solve the time-dependent advection-diffusion PDE on unknown smooth manifolds without and with boundaries. The core idea is to directly approximate the spatial components of the differential operator on the manifold with a local integral operator and combine it with the standard implicit time difference scheme. When the manifold has a boundary, a simplified version of the GPDM approach is used to overcome the bias of the integral approximation near the boundary. The Monte-Carlo discretization of the integral operator over the point cloud data gives rise to a mesh-free formulation that is natural for randomly distributed points, even when the manifold is embedded in high-dimensional ambient space. Here, we establish the convergence of the proposed solver on appropriate topologies, depending on the distribution of point cloud data and boundary type. We provide numerical results to validate the convergence results on various examples that involve simple geometry and an unknown manifold.</description><subject>Advection</subject><subject>Advection-diffusion equation</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer graphics</subject><subject>Convergence</subject><subject>Differential equations</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Operators (mathematics)</subject><subject>Partial differential equations</subject><subject>Theoretical</subject><subject>Time dependence</subject><subject>Topology</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5giMRvsOIntsbTlQ7RioCwslhufS6rUae2kFf8elyCxMZzuQ-97d3oQuqbklhLC7wIlkuaYpGkMkuX4cIIGNOcM80LSUzQgQuSYZzw7RxchrAkhUsh0gD5ewDuo8b0OYJI5tJ-NCYltfPLW1PvKrZJFtQE8gS04A65NRmYPZVs1Dk8qa7sQq2S66_RxFJLYzLWrbFObcInOrK4DXP3mIXp_mC7GT3j2-vg8Hs1wyahs8dKUWsb3tNZWmkLoEsosywgFrUtOjNAFM4ZrqQvDBWUkL1LGeU7lUqTALBuim37v1je7DkKr1k3nXTypUkkFo5wIHlVpryp9E4IHq7a-2mj_pShRR4aqZ6giQ_XDUB2iifWmEMVuBf5v9T-ubw9GdbU</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Yan, Qile</creator><creator>Jiang, Shixiao W.</creator><creator>Harlim, John</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9054-4209</orcidid></search><sort><creationdate>2023</creationdate><title>Kernel-Based Methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds</title><author>Yan, Qile ; Jiang, Shixiao W. ; Harlim, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bdca9088aaaf9d68acec44401eaac70d8a63dd7a9a6d78130562377519b82e3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advection</topic><topic>Advection-diffusion equation</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer graphics</topic><topic>Convergence</topic><topic>Differential equations</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Operators (mathematics)</topic><topic>Partial differential equations</topic><topic>Theoretical</topic><topic>Time dependence</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Qile</creatorcontrib><creatorcontrib>Jiang, Shixiao W.</creatorcontrib><creatorcontrib>Harlim, John</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Qile</au><au>Jiang, Shixiao W.</au><au>Harlim, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel-Based Methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2023</date><risdate>2023</risdate><volume>94</volume><issue>1</issue><spage>5</spage><pages>5-</pages><artnum>5</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM) and ghost point diffusion maps (GPDM), to solve the time-dependent advection-diffusion PDE on unknown smooth manifolds without and with boundaries. The core idea is to directly approximate the spatial components of the differential operator on the manifold with a local integral operator and combine it with the standard implicit time difference scheme. When the manifold has a boundary, a simplified version of the GPDM approach is used to overcome the bias of the integral approximation near the boundary. The Monte-Carlo discretization of the integral operator over the point cloud data gives rise to a mesh-free formulation that is natural for randomly distributed points, even when the manifold is embedded in high-dimensional ambient space. Here, we establish the convergence of the proposed solver on appropriate topologies, depending on the distribution of point cloud data and boundary type. We provide numerical results to validate the convergence results on various examples that involve simple geometry and an unknown manifold.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-022-02045-w</doi><orcidid>https://orcid.org/0000-0002-9054-4209</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2023, Vol.94 (1), p.5, Article 5 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_journals_2918317087 |
source | Springer Nature |
subjects | Advection Advection-diffusion equation Algorithms Approximation Boundary conditions Computational Mathematics and Numerical Analysis Computer graphics Convergence Differential equations Manifolds (mathematics) Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Methods Operators (mathematics) Partial differential equations Theoretical Time dependence Topology |
title | Kernel-Based Methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel-Based%20Methods%20for%20Solving%20Time-Dependent%20Advection-Diffusion%20Equations%20on%20Manifolds&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Yan,%20Qile&rft.date=2023&rft.volume=94&rft.issue=1&rft.spage=5&rft.pages=5-&rft.artnum=5&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-022-02045-w&rft_dat=%3Cproquest_cross%3E2918317087%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-bdca9088aaaf9d68acec44401eaac70d8a63dd7a9a6d78130562377519b82e3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918317087&rft_id=info:pmid/&rfr_iscdi=true |