Loading…

Kernel-Based Methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds

In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM) and ghost point diffusion maps (GPDM), to solve the time-dependent advection-diffusion PDE on unknown smooth manifolds without and with boundaries. The core idea is to directly approximate the spatial components...

Full description

Saved in:
Bibliographic Details
Published in:Journal of scientific computing 2023, Vol.94 (1), p.5, Article 5
Main Authors: Yan, Qile, Jiang, Shixiao W., Harlim, John
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-bdca9088aaaf9d68acec44401eaac70d8a63dd7a9a6d78130562377519b82e3f3
cites cdi_FETCH-LOGICAL-c319t-bdca9088aaaf9d68acec44401eaac70d8a63dd7a9a6d78130562377519b82e3f3
container_end_page
container_issue 1
container_start_page 5
container_title Journal of scientific computing
container_volume 94
creator Yan, Qile
Jiang, Shixiao W.
Harlim, John
description In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM) and ghost point diffusion maps (GPDM), to solve the time-dependent advection-diffusion PDE on unknown smooth manifolds without and with boundaries. The core idea is to directly approximate the spatial components of the differential operator on the manifold with a local integral operator and combine it with the standard implicit time difference scheme. When the manifold has a boundary, a simplified version of the GPDM approach is used to overcome the bias of the integral approximation near the boundary. The Monte-Carlo discretization of the integral operator over the point cloud data gives rise to a mesh-free formulation that is natural for randomly distributed points, even when the manifold is embedded in high-dimensional ambient space. Here, we establish the convergence of the proposed solver on appropriate topologies, depending on the distribution of point cloud data and boundary type. We provide numerical results to validate the convergence results on various examples that involve simple geometry and an unknown manifold.
doi_str_mv 10.1007/s10915-022-02045-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918317087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918317087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bdca9088aaaf9d68acec44401eaac70d8a63dd7a9a6d78130562377519b82e3f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMRvsOIntsbTlQ7RioCwslhufS6rUae2kFf8elyCxMZzuQ-97d3oQuqbklhLC7wIlkuaYpGkMkuX4cIIGNOcM80LSUzQgQuSYZzw7RxchrAkhUsh0gD5ewDuo8b0OYJI5tJ-NCYltfPLW1PvKrZJFtQE8gS04A65NRmYPZVs1Dk8qa7sQq2S66_RxFJLYzLWrbFObcInOrK4DXP3mIXp_mC7GT3j2-vg8Hs1wyahs8dKUWsb3tNZWmkLoEsosywgFrUtOjNAFM4ZrqQvDBWUkL1LGeU7lUqTALBuim37v1je7DkKr1k3nXTypUkkFo5wIHlVpryp9E4IHq7a-2mj_pShRR4aqZ6giQ_XDUB2iifWmEMVuBf5v9T-ubw9GdbU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918317087</pqid></control><display><type>article</type><title>Kernel-Based Methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds</title><source>Springer Nature</source><creator>Yan, Qile ; Jiang, Shixiao W. ; Harlim, John</creator><creatorcontrib>Yan, Qile ; Jiang, Shixiao W. ; Harlim, John</creatorcontrib><description>In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM) and ghost point diffusion maps (GPDM), to solve the time-dependent advection-diffusion PDE on unknown smooth manifolds without and with boundaries. The core idea is to directly approximate the spatial components of the differential operator on the manifold with a local integral operator and combine it with the standard implicit time difference scheme. When the manifold has a boundary, a simplified version of the GPDM approach is used to overcome the bias of the integral approximation near the boundary. The Monte-Carlo discretization of the integral operator over the point cloud data gives rise to a mesh-free formulation that is natural for randomly distributed points, even when the manifold is embedded in high-dimensional ambient space. Here, we establish the convergence of the proposed solver on appropriate topologies, depending on the distribution of point cloud data and boundary type. We provide numerical results to validate the convergence results on various examples that involve simple geometry and an unknown manifold.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-022-02045-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advection ; Advection-diffusion equation ; Algorithms ; Approximation ; Boundary conditions ; Computational Mathematics and Numerical Analysis ; Computer graphics ; Convergence ; Differential equations ; Manifolds (mathematics) ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Methods ; Operators (mathematics) ; Partial differential equations ; Theoretical ; Time dependence ; Topology</subject><ispartof>Journal of scientific computing, 2023, Vol.94 (1), p.5, Article 5</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bdca9088aaaf9d68acec44401eaac70d8a63dd7a9a6d78130562377519b82e3f3</citedby><cites>FETCH-LOGICAL-c319t-bdca9088aaaf9d68acec44401eaac70d8a63dd7a9a6d78130562377519b82e3f3</cites><orcidid>0000-0002-9054-4209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yan, Qile</creatorcontrib><creatorcontrib>Jiang, Shixiao W.</creatorcontrib><creatorcontrib>Harlim, John</creatorcontrib><title>Kernel-Based Methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM) and ghost point diffusion maps (GPDM), to solve the time-dependent advection-diffusion PDE on unknown smooth manifolds without and with boundaries. The core idea is to directly approximate the spatial components of the differential operator on the manifold with a local integral operator and combine it with the standard implicit time difference scheme. When the manifold has a boundary, a simplified version of the GPDM approach is used to overcome the bias of the integral approximation near the boundary. The Monte-Carlo discretization of the integral operator over the point cloud data gives rise to a mesh-free formulation that is natural for randomly distributed points, even when the manifold is embedded in high-dimensional ambient space. Here, we establish the convergence of the proposed solver on appropriate topologies, depending on the distribution of point cloud data and boundary type. We provide numerical results to validate the convergence results on various examples that involve simple geometry and an unknown manifold.</description><subject>Advection</subject><subject>Advection-diffusion equation</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer graphics</subject><subject>Convergence</subject><subject>Differential equations</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Operators (mathematics)</subject><subject>Partial differential equations</subject><subject>Theoretical</subject><subject>Time dependence</subject><subject>Topology</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5giMRvsOIntsbTlQ7RioCwslhufS6rUae2kFf8elyCxMZzuQ-97d3oQuqbklhLC7wIlkuaYpGkMkuX4cIIGNOcM80LSUzQgQuSYZzw7RxchrAkhUsh0gD5ewDuo8b0OYJI5tJ-NCYltfPLW1PvKrZJFtQE8gS04A65NRmYPZVs1Dk8qa7sQq2S66_RxFJLYzLWrbFObcInOrK4DXP3mIXp_mC7GT3j2-vg8Hs1wyahs8dKUWsb3tNZWmkLoEsosywgFrUtOjNAFM4ZrqQvDBWUkL1LGeU7lUqTALBuim37v1je7DkKr1k3nXTypUkkFo5wIHlVpryp9E4IHq7a-2mj_pShRR4aqZ6giQ_XDUB2iifWmEMVuBf5v9T-ubw9GdbU</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Yan, Qile</creator><creator>Jiang, Shixiao W.</creator><creator>Harlim, John</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9054-4209</orcidid></search><sort><creationdate>2023</creationdate><title>Kernel-Based Methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds</title><author>Yan, Qile ; Jiang, Shixiao W. ; Harlim, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bdca9088aaaf9d68acec44401eaac70d8a63dd7a9a6d78130562377519b82e3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advection</topic><topic>Advection-diffusion equation</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer graphics</topic><topic>Convergence</topic><topic>Differential equations</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Operators (mathematics)</topic><topic>Partial differential equations</topic><topic>Theoretical</topic><topic>Time dependence</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Qile</creatorcontrib><creatorcontrib>Jiang, Shixiao W.</creatorcontrib><creatorcontrib>Harlim, John</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Qile</au><au>Jiang, Shixiao W.</au><au>Harlim, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel-Based Methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2023</date><risdate>2023</risdate><volume>94</volume><issue>1</issue><spage>5</spage><pages>5-</pages><artnum>5</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM) and ghost point diffusion maps (GPDM), to solve the time-dependent advection-diffusion PDE on unknown smooth manifolds without and with boundaries. The core idea is to directly approximate the spatial components of the differential operator on the manifold with a local integral operator and combine it with the standard implicit time difference scheme. When the manifold has a boundary, a simplified version of the GPDM approach is used to overcome the bias of the integral approximation near the boundary. The Monte-Carlo discretization of the integral operator over the point cloud data gives rise to a mesh-free formulation that is natural for randomly distributed points, even when the manifold is embedded in high-dimensional ambient space. Here, we establish the convergence of the proposed solver on appropriate topologies, depending on the distribution of point cloud data and boundary type. We provide numerical results to validate the convergence results on various examples that involve simple geometry and an unknown manifold.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-022-02045-w</doi><orcidid>https://orcid.org/0000-0002-9054-4209</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2023, Vol.94 (1), p.5, Article 5
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_2918317087
source Springer Nature
subjects Advection
Advection-diffusion equation
Algorithms
Approximation
Boundary conditions
Computational Mathematics and Numerical Analysis
Computer graphics
Convergence
Differential equations
Manifolds (mathematics)
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Methods
Operators (mathematics)
Partial differential equations
Theoretical
Time dependence
Topology
title Kernel-Based Methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel-Based%20Methods%20for%20Solving%20Time-Dependent%20Advection-Diffusion%20Equations%20on%20Manifolds&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Yan,%20Qile&rft.date=2023&rft.volume=94&rft.issue=1&rft.spage=5&rft.pages=5-&rft.artnum=5&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-022-02045-w&rft_dat=%3Cproquest_cross%3E2918317087%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-bdca9088aaaf9d68acec44401eaac70d8a63dd7a9a6d78130562377519b82e3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918317087&rft_id=info:pmid/&rfr_iscdi=true